科研成果

2014
Xu Z, Wang J, Cai Y, Liu J, Jin C, Yang Z, Wang M, Yu M, Xie B, Wu W, et al. Enhancement Mode (E-Mode) AlGaN/GaN MOSFET With 10(-13) A/mm Leakage Current and 10(12) ON/OFF Current Ratio. IEEE ELECTRON DEVICE LETTERS. 2014;35:1200-1202.Abstract
Postgate annealing (PGA) in N-2/O-2 atmosphere at 300 degrees C for various annealing time is performed on enhancement mode AlGaN/GaN MOSFET fabricated using a self-terminating gate recess etching technique. After 45-min annealing, the device OFF-state leakage current decreases by more than two orders of magnitude and thus a low OFF-state leakage current of similar to 10(-13) A/mm is obtained at room temperature, resulting in an excellent ON/OFF current ratio of similar to 10(12). At 250 degrees C, the device still exhibits a low OFF-state leakage current of similar to 10(-9) A/mm and high ON/OFF current ratio of similar to 10(8). Meanwhile, a strong correlation between the OFF-state leakage current and mesa isolation current is observed as we change the annealing time: 1) the lower the mesa isolation current and 2) the lower the OFF-state leakage current and thus the higher the ON/OFF current ratio. It is the suppression of the mesa isolation current owing to the passivation of atomic layer deposition Al2O3 that leads to the improvement of the OFF-state leakage current and ON/OFF current ratio after PGA. Besides, the device shows no obvious change in terms of its threshold voltage and maximum drain current after PGA.
Wang M, Wang Y, Zhang C, Wen CP, Wang J, Hao Y, Wu W, Shen B, Chen KJ. Normally-Off Hybrid Al2O3/GaN MOSFET on Silicon Substrate Based on Wet-Etching, in 2014 IEEE 26TH INTERNATIONAL SYMPOSIUM ON POWER SEMICONDUCTOR DEVICES & IC'S (ISPSD). IEEE; 2014:253-256.Abstract
This paper reports a normally-off high voltage hybrid Al203/GaN gate-recessed MOSFET fabricated on silicon substrate. The normally off operation was implemented by digital gate recess using an oxidation and wet etching based AlGaN barrier remove technique. The Al203/GaN MOSFET features a true normally off operation with a threshold voltage of 2 V extracted by the linear extrapolation of the transfer curve. The three terminal off-state breakdown voltage is 1650 V for the device with 30 gm gate-drain distance with floating Si substrate. The breakdown voltage is limited to 1000 V when the Si substrate is grounded. The on-resistance is 7.0 m Omega cm(2) for the device with 30 gm gate-drain distance and the power figure of merit is 388 MW/cm2. The small signal RF performance of the normally-off GaN MOSFET is also evaluated.
Liu S, Yang S, Tang Z, Jiang Q, Liu C, Wang M, Chen KJ. Performance Enhancement of Normally-Off Al2O3/AlN/GaNMOS-Channel-HEMTs with an ALD-Grown AlN Interfacial Layer, in 2014 IEEE 26TH INTERNATIONAL SYMPOSIUM ON POWER SEMICONDUCTOR DEVICES & IC'S (ISPSD). IEEE; 2014:362-365.Abstract
In this work, the performance of GaN-based MOS-Channel-HEMTs (MOSC-HEMTs) are shown to be greatly improved by a thin ALD-grown AlN interfacial layer inserted between the amorphous Al2O3 gate dielectric and GaN-channel. The single-crystalline AlN interfacial layer effectively blocks oxygen from the GaN surface and avoids the formation of detrimental Ga-O bonds. Frequency-dispersion in C-V characteristics has been effectively suppressed. The maximum drain current and field-effect mobility are boosted from 410 mA/mm and 98 cm(2)/V.s in a conventional Al2O3/GaN MOSC-HEMT to 660 mA/mm and 165 cm(2)/V.s in an Al2O3/AlN/GaN MOSC-HEMT, owing to improved interface quality. The devices also deliver a high ON/OFF current ratio of similar to 10(10), and significantly reduced dynamic on-resistance degradation.
2013
Wang Y, Wang M, Xie B, Wen CP, Wang J, Hao Y, Wu W, Chen KJ, Shen B. High-Performance Normally-Off Al2O3/GaN MOSFET Using a Wet Etching-Based Gate Recess Technique. IEEE ELECTRON DEVICE LETTERS. 2013;34:1370-1372.Abstract
This letter reports a normally-OFF Al2O3/GaN gate-recessed MOSFET using a low-damage digital recess technique featuring multiple cycles of plasma oxidation and wet oxide removal process. The wet etching process eliminates the damage induced by plasma bombardment induced in conventional inductively coupled plasma dry etching process so that good surface morphology and high interface quality could be achieved. The fully recessed Al2O3/GaN MOSFET delivers true enhancement-mode operation with a threshold voltage of +1.7 V. The maximum output current density is 528 mA/mm at a positive gate bias of 8 V. A peak field-effect mobility of 251 cm(2)/V.s is obtained, indicating high-quality Al2O3/GaN interface.
Meng D, Lin S, Wen CP, Wang M, Wang J, Hao Y, Zhang Y, Lau KM, Wu W. Low Leakage Current and High-Cutoff Frequency AlGaN/GaN MOSHEMT Using Submicrometer-Footprint Thermal Oxidized TiO2/NiO as Gate Dielectric. IEEE ELECTRON DEVICE LETTERS. 2013;34:738-740.Abstract
AlGaN/GaN metal oxide semiconductor high electron mobility transistors (MOSHEMTs) with thick (>35 nm), high-kappa (TiO2/NiO), submicrometer-footprint (0.4 mu m) gate dielectric are found to exhibit two orders of magnitude in lower gate leakage current (similar to 1 nA/mm up to +3-V applied gate bias), higher I-MAX (709 mA/mm), and higher drain breakdown voltage, compared to Schottky barrier (SB) HEMTs of the same geometry. The maximum extrinsic transconductance of both the MOSHEMTs and the SBHEMTs with 2 x 80-mu m gate fingers is measured to be 149 mS/mm. The addition of the submicrometer-footprint gate oxide layer only results in a small reduction of the current gain cutoff frequency (21 versus 25 GHz, derived from S-parameter test data) because of the high permittivity (kappa approximate to 100) of the gate dielectric. This high-performance submicrometer-footprint MOSHEMT is highly promising for microwave power amplifier applications in communication and radar systems.
Xu Z, Wang J, Liu Y, Cai J, Liu J, Wang M, Yu M, Xie B, Wu W, Ma X, et al. Fabrication of Normally Off AlGaN/GaN MOSFET Using a Self-Terminating Gate Recess Etching Technique. IEEE ELECTRON DEVICE LETTERS. 2013;34:855-857.Abstract
A self-terminating gate recess etching technique is first proposed to fabricate normally off AlGaN/GaN MOSFET. The gate recess process includes a thermal oxidation of the AlGaN barrier layer for 40 min at 615 degrees C followed by 45-min etching in potassium hydroxide solution at 70 degrees C, which is found to be self-terminated at the AlGaN/GaN interface with negligible effect on the underlying GaN layer, manifesting itself easy to control, highly repeatable, and promising for industrialization. The fabricated device based on this technique with atomic layer deposition Al2O3 as gate insulator exhibits a threshold voltage as high as 3.2 V with a maximum drain current over 200 mA/mm and a 60% increased breakdown voltage than that of the conventional high electron mobility transistors.
Lin S, Meng D, Wen CP, Wang M, Wang J, Hao Y, Zhang Y, Lau KM. Analysis on the CTLM and LTLM applicability for GaN HEMTs structure alloyed ohmic contact resistance evaluation, in 2013 IEEE INTERNATIONAL CONFERENCE OF ELECTRON DEVICES AND SOLID-STATE CIRCUITS (EDSSC).; 2013.Abstract
In this letter, we have demonstrated that the circular transmission linear model (Marlow's CTLM) is unsuitable for GaN HEMTs structure alloyed ohmic contact resistance evaluation. Very large spread is found in the extracted ohmic resistance values from measured data using the commonly used CTLM test patterns, and some of the contact resistances are found to be negative. We suspect that the stress induced by ohmic contact formation process is the culprit, preventing the use of CTLM test pattern for GaN HEMTs structure ohmic contact resistance evaluation, because of the strong piezoelectric induced polarization property of the hexagonal Ill-nitride heterojunction device structure. Meanwhile, measured ohmic contact resistance (R-c) and sheet resistance (R-sq) are found to exhibit good uniformity using a properly prepared linear transmission line model (LTLM) test pattern in which all the Gallium nitride material extended beyond the gaps between the ohmic contact electrodes are removed.
Di M, Shuxun L, Wen CP, Maojun W, Jinyan W, Yilong H, Yaohui Z, Lau KM, Wengang W. Characteristics of Submicron-footprint TiO2 based AlGaN/GaN MOSHEMT on SiC Substrate, in 2013 IEEE INTERNATIONAL CONFERENCE OF ELECTRON DEVICES AND SOLID-STATE CIRCUITS (EDSSC).; 2013.Abstract
AlGaN/GaN metal-oxide-semiconductor high electron mobility transistors (MOSHEMTs) with thick (>30 nm), high-kappa (TiO2/NiO), submicron-footprint (0.4 mu m) gate dielectric on SiC substrate are demonstrated, which are found to exhibit low gate leakage current (similar to 1 nA/mm of gate periphery), high I-MAX (1 A/mm), and high drain breakdown voltage (188 V). The derived current gain cutoff frequency is 30 GHz (from S-parameter measurements). The output power density is 6.6 W/mm, and the associated power-add ed-efficiency is 46% at 2.5 GHz frequency and 50 V drain bias. This high performance submicron-footprint MOSHEMT is highly promising for microwave power amplifier applications in communication and radar systems.
2011
Wang M, Chen KJ. Improvement of the Off-State Breakdown Voltage With Fluorine Ion Implantation in AlGaN/GaN HEMTs. IEEE TRANSACTIONS ON ELECTRON DEVICES. 2011;58:460-465.Abstract
Improvement of the AlGaN/GaN high-electron mobility transistor's (HEMT's) OFF-state breakdown voltage is achieved by implanting (19)F(+) ions at an energy of 50 keV and dose of 1 x 10(12) cm(-2) under the gate region using BF(3) as the source. The charge state of the implanted fluorine ions changes from positive to negative in the AlGaN/GaN structure because of fluorine's strong electronegativity. The negative-charged fluorine ions at the back side of the two-dimensional electron gas can raise the energy barrier of the GaN buffer layer under the channel, effectively blocking the current injected from the source to the high-field region of the GaN channel when the HEMT is biased at OFF-state. The source-injected electrons, if not blocked, could flow to the high-field region and initiate a premature three-terminal OFF-state breakdown in a conventional AlGaN/GaN HEMT. A 38% improvement of the three-terminal OFF-state breakdown voltage and 40% improvement of the power figure-of-merit V(BD-off)(2)/R(on) are achieved in the enhanced back barrier HEMT.
Wang M, Chen KJ. Kink Effect in AlGaN/GaN HEMTs Induced by Drain and Gate Pumping. IEEE ELECTRON DEVICE LETTERS. 2011;32:482-484.Abstract
Kink effects are studied in conventional AlGaN/GaN high-electron-mobility transistors by measuring their current-voltage characteristics with various bias sweeping conditions at drain and gate terminals. It is found that the kink effect is induced by drain and gate pumping. The magnitude of kink is directly related to the maximum drain voltage and current levels during on-state operation. The hot electrons in the 2-D electron gas channel generated under high drain bias could be injected into the adjacent epitaxial buffer layer where they can be captured by donor-like traps. Hot electron trapping and the subsequent field-assisted de-trapping is suggested to be the dominant mechanism of kink generation in the studied device. The extracted activation energy of the traps accounting for the kink effect is 589 +/- 67 meV from temperature-dependent transient measurement, and is close to the energy of the E-2 trap widely reported in GaN layers.
Chen H, Wang M, Chen KJ. Enhancement-Mode AlGaN/GaN HEMTs Fabricated by Standard Fluorine Ion Implantation with a Si3N4 Energy-Absorbing Layer. ELECTROCHEMICAL AND SOLID STATE LETTERS. 2011;14:H229-H231.Abstract
This paper presents a fabrication technology of enhancement-mode AlGaN/GaN high electron mobility transistors (HEMTs) using standard fluorine ion implantation. An 80 nm silicon nitride layer was deposited on the AlGaN as an energy-absorbing layer that slows down the high energy (similar to 25 keV) fluorine ions so that majority of the fluorine ions are incorporated in the AlGaN barrier. The threshold voltage was successfully shifted from -1.9 to +1.8 V, converting depletion mode HEMTs to enhancement-mode ones. The fluorine ion distribution profile was confirmed by Secondary Ion Mass Spectrometry (SIMS). (C) 2011 The Electrochemical Society. [DOI: 10.1149/1.3562273] All rights reserved.
2010
Wang M, Cheng CC, Beling CD, Fung S, Chen KJ. Modulation of polarization field by fluorine ions in AlGaN/GaN heterostructures revealed by positron annihilation spectroscopy. PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE. 2010;207:1332-1334.Abstract
Modulations of energy band and polarization field by fluorine ions in fluorine plasma treated AlGaN/GaN heterostructures were revealed by positron annihilation spectroscopy (PAS). It is found that the annihilation probability is mainly governed by the electric field in the AlGaN/GaN heterostructure, which could be modulated by charged ions, opposite to what was first expected from the large number of plasma-induced defects such as Ga-vacancies. The modulation of electric field is successfully observed through the opposite changes in the S parameters on the two sides of the hetero-interface after fluorine plasma treatment due to the opposite E-field directions. Fluorine is experimentally proved to be negatively charged in GaN related materials, which is consistent with the operation principle of enhancement-mode AlGaN/GaN HEMT fabricated by fluorine plasma treatment. It is also suggested that PAS is a useful tool to probe the intrinsic electric field in AlGaN/GaN system. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Wang M, Chen KJ. Off-State Breakdown Characterization in AlGaN/GaN HEMT Using Drain Injection Technique. IEEE TRANSACTIONS ON ELECTRON DEVICES. 2010;57:1492-1496.Abstract
AlGaN/GaN high-electron mobility transistor's (HEMT's) off-state breakdown is investigated using drain-current injection techniques with different injection current levels. Competitions between the source leakage and gate leakage, pure leakage and impact ionization, and source-and gate-injection-induced impact ionization during the drain-injection measurement are discussed in detail. It was found that the breakdown originates from the source/gate leakage at low drain injection levels but is dominated by source/gate-induced impact ionization process at high drain injection currents. The source-induced impact ionization usually precedes the gate-induced impact ionization in low-gate leakage devices, resulting in a premature three-terminal off-state breakdown. We also found that the gate-bias value affects the breakdown voltage in the conventional three-terminal off-state breakdown I-V measurement and should be carefully considered.
2009
Yuan L, Wang M, Chen KJ. On the stability of fluorine ions in AlGaN/GaN heterostructures: a molecular dynamics simulation study, in PHYSICA STATUS SOLIDI C: CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 6, SUPPL 2.Vol 6.; 2009:S944-S947.Abstract
Fluorine ions can be effectively incorporated into AlGaN/GaN high electron mobility transistor (HEMT) structures, enabling the modulation of local potential and carrier density. The physical mechanism of fluorine incorporation in AlGaN/GaN heterojunctions is of fundamental importance to the stability of fluorine ions in AlGaN/GaN HEMTs. In this work, the molecular dynamic (MD) simulation method is used to calculate the potential energies of interstitial and substitutional fluorine atoms in AlGaN/GaN material system. Ziegler-Biersack-Littmark (ZBL), Lindhard-Sorensen (L-S) and Coulomb potential functions are applied in the MD simulation. The geometric lattice structures, spontaneous and piezoelectric polarizations, and temperature dependence are also included in the simulation. The activation energies associated with interstitial-substitutional and interstitial-interstitial diffusions are obtained. It is revealed that the fluorine ions are most likely located at the substitutional group-III cation sites S(III) and the diffusion of fluorine ions should be dominated by S(III)-interstitial process which exhibits an activation energy of 1.1 eV in Al(0.25)Ga(0.75)N and 1.4 eV in GaN in the presence of group-III vacancies. It is expected that the removal of group-III vacancies can significantly suppress the fluorine diffusion, which in turn, leads to excellent fluorine stability in III-nitride materials. (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Wang M, Yuan L, Xu F, Shen B, Chen KJ. Study of diffusion and thermal stability of fluorine ions in GaN by Time-of-Flight Secondary Ion Mass Spectroscopy, in PHYSICA STATUS SOLIDI C: CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 6, SUPPL 2.Vol 6.; 2009:S952-S955.Abstract
The diffusion properties of fluorine ions in GaN are investigated by means of Time-of-Flight secondary ion mass spectroscopy. Instead of incorporating fluorine ions close to the sample surface by plasma, fluorine ion implantation with an energy of 180 keV is utilized to implant fluorine ions deep into the GaN bulk, preventing the surface effects from affecting the data analysis. It is found that the diffusion of fluorine-ions in GaN is a dynamic process, featuring a two-step process. A defect-assisted diffusion model is proposed to account for the experimental observations. Fluorine ions tend to occupy Ga vacancies induced by fluorine ion implantation and diffuse to vacancy rich regions. The fluorine ions become stable after continuous vacancy chains are significantly reduced or removed by thermal annealing. (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
2008
Yuan L, Wang M, Chen KJ. Atomistic Modeling of Fluorine Implantation and Diffusion in III-Nitride Semiconductors, in IEEE INTERNATIONAL ELECTRON DEVICES MEETING 2008, TECHNICAL DIGEST. IEEE Electron Devices Soc; 2008:543-546.Abstract
A hybrid molecular dynamics (MD)/kinetic Monte Carlo (KMC) model is developed for atomistic modeling of fluorine ion implantation and diffusion in AlGaN/GaN heterostructures. The MD simulation reveals the F distribution profiles and the corresponding defect profiles, and most importantly, the potential energies of fluorine ions in the III-nitride material system. Using the results from the MD simulation, the diffusion process is simulated with KMC method, and the modeling results are validated by the secondary-ion-mass-spectrum (SIMS) measurement. The surface effect on the fluorine's stability and its improvement by passivation are also successfully modeled.
Yuan L, Wang M, Chen KJ. Molecular Dynamics Simulation Study on Fluorine Plasma Ion Implantation in AlGaN/GaN Heterostructures, in 2008 9TH INTERNATIONAL CONFERENCE ON SOLID-STATE AND INTEGRATED-CIRCUIT TECHNOLOGY, VOLS 1-4. IEEE Beijing Sect; Chinese Inst Elect; IEEE Electron Devices Soc; IEEE EDS Beijing Chapter; IEEE Solid State Circuits Soc; IEEE Circuits & Syst Soc; IEEE Hong Kong EDS, SSCS Chapter; IEEE SSCS Beijing Chapter; Japan Soc Appl Phys; Elect Div IEEE; URSI Com; 2008:1090-1093.Abstract
Fluorine plasma ion implantation is a robust technique that enables shallow implantation of fluorine ions into group III-nitride epitaxial structures. This technique has been used to achieve robust threshold control of the AlGaN/GaN high electron mobility transistors (HEMTs) and. led to the realization of self-aligned enhancement-mode devices. To reveal the atomic scale interactions and provide a modeling tool for process design and optimization, a molecular dynamics (MD) simulation is conducted for carbon tetrafluoride (CF(4)) plasma implantation. Specific potential functions are applied to calculate the interactions among atoms and simulate the dynamics process of fluorine ions' penetration and stopping in III-nitride materials. The MD simulation provides accurate information on dopant profiles that are verified by secondary ion mass spectrum (SIMS) measurements. Defect formation and distributions, that are critical in process development, are also investigated. The MD simulation tool is capable of providing 2-dimensional fluorine dopant profiles.
Wang M, Chen KJ. Source Injection Induced Off-State Breakdown and Its Improvement by Enhanced Back Barrier with Fluorine Ion Implantation in AlGaN/GaN HEMTs, in IEEE INTERNATIONAL ELECTRON DEVICES MEETING 2008, TECHNICAL DIGEST. IEEE Electron Devices Soc; 2008:149-152.Abstract
The mechanisms of AlGaN/GaN HEMT's off-state breakdown are investigated. Both the source- and gate-injection induced impact ionizations are identified with the former leading to premature three-terminal breakdown. A 35% improvement of the breakdown voltage could be achieved in an enhanced back barrier HEMT by implanting fluorine ions under the channel region and effectively block the source injection through the buffer layer.

Pages