Characteristics of Submicron-footprint TiO2 based AlGaN/GaN MOSHEMT on SiC Substrate

Citation:

Di M, Shuxun L, Wen CP, Maojun W, Jinyan W, Yilong H, Yaohui Z, Lau KM, Wengang W. Characteristics of Submicron-footprint TiO2 based AlGaN/GaN MOSHEMT on SiC Substrate, in 2013 IEEE INTERNATIONAL CONFERENCE OF ELECTRON DEVICES AND SOLID-STATE CIRCUITS (EDSSC).; 2013.

摘要:

AlGaN/GaN metal-oxide-semiconductor high electron mobility transistors (MOSHEMTs) with thick (>30 nm), high-kappa (TiO2/NiO), submicron-footprint (0.4 mu m) gate dielectric on SiC substrate are demonstrated, which are found to exhibit low gate leakage current (similar to 1 nA/mm of gate periphery), high I-MAX (1 A/mm), and high drain breakdown voltage (188 V). The derived current gain cutoff frequency is 30 GHz (from S-parameter measurements). The output power density is 6.6 W/mm, and the associated power-add ed-efficiency is 46% at 2.5 GHz frequency and 50 V drain bias. This high performance submicron-footprint MOSHEMT is highly promising for microwave power amplifier applications in communication and radar systems.

附注:

IEEE International Conference of Electron Devices and Solid-State Circuits (EDSSC), Hong Kong, PEOPLES R CHINA, JUN 03-05, 2013