Wu L, Wang Z, Wang B, Chen Q, Bao L, Yu Z, Yang Y, Ling Y, Qin Y, Tang K, et al. Emulation of biphasic plasticity in retinal electrical synapses for light-adaptive pattern pre-processing. Nanoscale [Internet]. 2021;13:3483-3492.
访问链接AbstractElectrical synapses provide rapid, bidirectional communication in nervous systems, accomplishing tasks distinct from and complementary to chemical synapses. Here, we demonstrate an artificial electrical synapse based on second-order conductance transition (SOCT) in an Ag-based memristor for the first time. High-resolution transmission electron microscopy indicates that SOCT is mediated by the virtual silver electrode. Besides the conventional chemical synaptic behaviors, the biphasic plasticity of electrical synapses is well emulated by integrating the device with a photosensitive element to form an optical pre-processing unit (OPU), which contributes to the retinal neural circuitry and is adaptive to ambient illumination. By synergizing the OPU and spiking neural network (SNN), adaptive pattern recognition tasks are accomplished under different light and noise settings. This work not only contributes to the further completion of synaptic behaviour for hardware-level neuromorphic computing, but also potentially enables image pre-processing with light adaptation and noise suppression for adaptive visual recognition.
Wu L, Bao L, Wang Z, Yu Z, Wang B, Chen Q, Ling Y, Qin Y, Tang K, Cai Y, et al. Emulation of Synaptic Scaling Based on MoS2 Neuristor for Self-Adaptative Neuromorphic Computing. Advanced Electronic Materials [Internet]. 2021;7:2001104.
访问链接AbstractAbstract Recent studies indicate that synaptic scaling is a vital mechanism to solve instability risks brought by the positive feedback of synaptic weight change related with standalone Hebbian plasticity. There are two kinds of synaptic scaling in the neural network, including local scaling and global scaling, both important for stabilizing the neural function. In this paper, for the first time, local synaptic scaling is emulated based on the MoS2 neuristor. The first-principle calculation reveals that synaptic scaling achieved by the neuristor is associated with an internal residual Li+-related weak dynamical process. Experimental results show the potential of achieving global synaptic scaling by the same device. Moreover, inspired by the synaptic scaling in the human brain, a new method of weight mapping called weight scaling mapping (WSM) is proposed to improve the stability of an artificial neural network (ANN). The simulation results indicate that WSM can improve the accuracy and anti-noise ability of the network compared with the traditional mapping method. These findings provide new insight into bionic research and help advance the construction of stable neuromorphic systems.
Tang K, Dong K, Li J, Gordon MP, Reichertz FG, Kim H, Rho Y, Wang Q, Lin C-Y, Grigoropoulos CP, et al. Temperature-adaptive radiative coating for all-season household thermal regulation. Science [Internet]. 2021;374:1504-1509.
访问链接AbstractPassive radiative cooling technology uses the infrared atmospheric window to allow outer space to be a cold sink for heat. However, this effect is one that is only helpful for energy savings in the warmer months. Wang et al. and Tang et al. used the metal-insulator transition in tungsten-doped vanadium dioxide to create window glass and a rooftop coating that circumvents this problem by turning off the radiative cooling at lower temperatures. Because the transition is simply temperature dependent, this effect also happens passively. Model simulations suggest that these materials would lead to energy savings year-round across most of the climate zones in the United States. —BG A smart radiative coating automatically switches thermal radiation power in response to ambient temperature. The sky is a natural heat sink that has been extensively used for passive radiative cooling of households. A lot of focus has been on maximizing the radiative cooling power of roof coating in the hot daytime using static, cooling-optimized material properties. However, the resultant overcooling in cold night or winter times exacerbates the heating cost, especially in climates where heating dominates energy consumption. We approached thermal regulation from an all-season perspective by developing a mechanically flexible coating that adapts its thermal emittance to different ambient temperatures. The fabricated temperature-adaptive radiative coating (TARC) optimally absorbs the solar energy and automatically switches thermal emittance from 0.20 for ambient temperatures lower than 15°C to 0.90 for temperatures above 30°C, driven by a photonically amplified metal-insulator transition. Simulations show that this system outperforms existing roof coatings for energy saving in most climates, especially those with substantial seasonal variations.