科研成果

2021
Jie L, TANG X, Liu J, Shen L, Li S, Sun N, Flynn MP. An Overview of Noise-Shaping SAR ADC: From Fundamentals to the Frontier. IEEE Open Journal of the Solid-State Circuits Society. 2021;1:149-161.Abstract
The Noise-Shaping (NS) SAR is an attractive new ADC architecture that emerged in the last decade. It combines the advantages of the SAR and the DSM architectures. NS SAR shows excellent potential for high efficiency and low cost, and is highly suited to process scaling. This paper gives an overview of the history of NS-SAR, reviews the fundamentals challenges, and summarizes the latest developments, including advanced loop filtering techniques, DAC mismatch mitigation, kT/C mitigation, and bandwidth boosting. A comprehensive comparison of the state-of-the-art NS-SAR ADCs is provided, and conclusions are derived.
Shi W, Liu J, Mukherjee A, Yang X, TANG X, Shen L, Zhao W, Sun N. 10.4 A 3.7mW 12.5MHz 81dB-SNDR 4th-Order CTDSM with Single-OTA and 2nd-Order NS-SAR, in 2021 IEEE International Solid- State Circuits Conference (ISSCC).Vol 64.; 2021:170-172.
2020
TANG X, Li S, Yang X, Shen L, Zhao W, Williams RP, Liu J, Tan Z, Hall NA, Pan DZ, et al. An Energy-Efficient Time-Domain Incremental Zoom Capacitance-to-Digital Converter. IEEE Journal of Solid-State Circuits. 2020;55:3064-3075.Abstract
This article presents an incremental two-step capacitance-to-digital converter (CDC) with a time-domain ΔΣ modulator (TDΔΣM). Unlike the classic two-step CDCs, this work replaces the operational transconductance amplifier (OTA)-based active-RC integrator by a voltage-controlled oscillator (VCO)-based integrator, which is mostly digital and low-power. Featuring the infinite dc gain and intrinsic quantization in phase domain, this TDΔΣM enables a CDC design achieving 76-dB SNDR while requiring only a first-order loop, and a low oversampling ratio (OSR) of 15. Fabricated in 40-nm CMOS technology, the prototype CDC achieves a resolution of 0.29 fF while dissipating only 0.083 nJ/conversion, which improves the energy efficiency by over two times comparing to the similar performance designs.
Zhao W, Li S, Xu B, Yang X, TANG X, Shen L, Lu N, Pan DZ, Sun N. A 0.025-mm2 0.8-V 78.5-dB SNDR VCO-Based Sensor Readout Circuit in a Hybrid PLL- $ΔΣ$ M Structure. IEEE Journal of Solid-State Circuits. 2020;55:666-679.Abstract
This article presents a capacitively coupled voltage-controlled oscillator (VCO)-based sensor readout featuring a hybrid phase-locked loop (PLL)-ΔΣ modulator structure. It leverages phase-locking and phase-frequency detector (PFD) array to concurrently perform quantization and dynamic element matching (DEM), much-reducing hardware/power compared with the existing VCO-based readouts' counting scheme. A low-cost in-cell data-weighted averaging (DWA) scheme is presented to enable a highly linear tri-level digital-to-analog converter (DAC). Fabricated in 40-nm CMOS, the prototype readout achieves 78-dB SNDR in 10-kHz bandwidth, consuming 4.68 μW and 0.025-mm2 active area. With 172-dB Schreier figure of merit, its efficiency advances the state-of-the-art VCO-based readouts by 50×.
Wang H, Wang K, Yang J, Shen L, Sun N, Lee H-S, Han S. GCN-RL Circuit Designer: Transferable Transistor Sizing with Graph Neural Networks and Reinforcement Learning, in 2020 57th ACM/IEEE Design Automation Conference (DAC).; 2020:1-6.Abstract
Automatic transistor sizing is a challenging problem in circuit design due to the large design space, complex performance tradeoffs, and fast technology advancements. Although there have been plenty of work on transistor sizing targeting on one circuit, limited research has been done on transferring the knowledge from one circuit to another to reduce the re-design overhead. In this paper, we present GCN-RL Circuit Designer, leveraging reinforcement learning (RL) to transfer the knowledge between different technology nodes and topologies. Moreover, inspired by the simple fact that circuit is a graph, we learn on the circuit topology representation with graph convolutional neural networks (GCN). The GCN-RL agent extracts features of the topology graph whose vertices are transistors, edges are wires. Our learning-based optimization consistently achieves the highest Figures of Merit (FoM) on four different circuits compared with conventional black box optimization methods (Bayesian Optimization, Evolutionary Algorithms), random search and human expert designs. Experiments on transfer learning between five technology nodes and two circuit topologies demonstrate that RL with transfer learning can achieve much higher FoMs than methods without knowledge transfer. Our transferable optimization method makes transistor sizing and design porting more effective and efficient.
ZHONG Y, Li S, TANG X, Shen L, Zhao W, Wu S, Sun N. A Second-Order Purely VCO-Based CT $ΔΣ$ ADC Using a Modified DPLL Structure in 40-nm CMOS. IEEE Journal of Solid-State Circuits. 2020;55:356-368.Abstract
This article presents a power-efficient purely voltage-controlled oscillator (VCO)-based second-order continuous-time (CT) ΔΣ analog-to-digital converter (ADC), featuring a modified digital phase-locked loop (DPLL) structure. The proposed ADC combines a VCO with a switched-ring oscillator (SRO)-based time-to-digital converter (TDC), which enables second-order noise shaping without any operational transconductance amplifiers (OTAs). The nonlinearity of the front-end VCO is mitigated by putting it inside a closed loop. An array of phase/frequency detectors (PFDs) is used to relax the requirement on the VCO center frequency and thus reduces the VCO power and noise. The proposed architecture also realizes an intrinsic tri-level data-weighted averaging (DWA). A prototype chip is fabricated in a 40-nm CMOS process. The proposed ADC achieves a peak signal-to-noise-and-distortion ratio (SNDR) of 69.4 dB over 5.2-MHz bandwidth, while operating at the 260 MS/s and consuming 0.86 mW from a 1.1-V supply.
TANG X, Yang X, Zhao W, Hsu C-K, Liu J, Shen L, Mukherjee A, Shi W, Li S, Pan DZ, et al. A 13.5-ENOB, 107-μW Noise-Shaping SAR ADC With PVT-Robust Closed-Loop Dynamic Amplifier. IEEE Journal of Solid-State Circuits. 2020;55:3248-3259.Abstract
This article presents a second-order noise-shaping (NS) successive approximation register (SAR) analog-to-digital converter (ADC) with a process, voltage, and temperature (PVT)-robust closed-loop dynamic amplifier. The proposed closed-loop dynamic amplifier combines the merits of closed-loop architecture and dynamic operation, realizing robustness, high accuracy, and high energy-efficiency simultaneously. It is embedded in the loop filter of an NS SAR design, enabling the first fully dynamic NS-SAR ADC that realizes sharp noise transfer function (NTF) while not requiring any gain calibration. Fabricated in 40-nm CMOS technology, the prototype ADC achieves an SNDR of 83.8 dB over a bandwidth of 625 kHz while consuming only 107 μW. It results in an SNDR-based Schreier figure-of-merit (FoM) of 181.5 dB.
Liu J, TANG X, Zhao W, Shen L, Sun N. A 13-bit 0.005-mm2 40-MS/s SAR ADC With kT/C Noise Cancellation. IEEE Journal of Solid-State Circuits. 2020;55:3260-3270.Abstract
As any analog-to-digital converter (ADC) with a front-end sample-and-hold (S/H) circuit, successive approximation register (SAR) ADC suffers from a fundamental signal-to-noise ratio (SNR) challenge: its sampling kT/C noise. To satisfy the SNR requirement, the input capacitor size has to be sufficiently large, leading to a great burden for the design of the ADC input driver and reference buffer. This article presents an SAR ADC with a kT/C noise-cancellation technique. It enables the substantial reduction of ADC input capacitor size but without the large kT/C noise penalty. It greatly relaxes the requirement for ADC input driver and reference buffer. Built in 40-nm CMOS, a prototype 13-bit ADC has only 240-fF input capacitance and occupies a small area of 0.005 mm2. Operating at 40 MS/s, it achieves a 69-dB signal-to-noise-and-distortion ratio (SNDR) across the Nyquist frequency band while consuming 591 μW of power.
TANG X, Shen L*(CA), Kasap B, Yang X, Shi W, Mukherjee A, Pan DZ, Sun N. An Energy-Efficient Comparator With Dynamic Floating Inverter Amplifier. IEEE Journal of Solid-State Circuits. 2020;55:1011-1022.Abstract
This article presents an energy-efficient comparator design. The pre-amplifier adopts an inverter-based input pair powered by a floating reservoir capacitor; it realizes both current reuse and dynamic bias, thereby significantly boosting gm/ID and reducing noise. Moreover, it greatly reduces the influence of the process corner and the input common-mode voltage on the comparator performance, including noise, offset, and delay. A prototype comparator in 180 nm achieves 46-μV input-referred noise while consuming only 1 pJ per comparison under a 1.2-V supply. This represents greater than seven-time energy efficiency boost compared with a strong-arm (SA) latch. It achieves the highest reported comparator energy efficiency to the best of our knowledge.
Liu J, TANG X, Zhao W, Shen L, Sun N. 16.5 A 13b 0.005mm2 40MS/s SAR ADC with kT/C Noise Cancellation, in 2020 IEEE International Solid- State Circuits Conference - (ISSCC).; 2020:258-260.
TANG X, Yang X, Zhao W, Hsu C-K, Liu J, Shen L, Mukherjee A, Shi W, Pan DZ, Sun N. 9.5 A 13.5b-ENOB Second-Order Noise-Shaping SAR with PVT-Robust Closed-Loop Dynamic Amplifier, in 2020 IEEE International Solid- State Circuits Conference - (ISSCC).; 2020:162-164.
2019
Xu B, Lin Y, TANG X, Li S, Shen L, Sun N, Pan DZ. WellGAN: Generative-Adversarial-Network-Guided Well Generation for Analog/Mixed-Signal Circuit Layout, in 2019 56th ACM/IEEE Design Automation Conference (DAC).; 2019:1-6.Abstract
In back-end analog/mixed-signal (AMS) design flow, well generation persists as a fundamental challenge for layout compactness, routing complexity, circuit performance and robustness. The immaturity of AMS layout automation tools comes to a large extent from the difficulty in comprehending and incorporating designer expertise. To mimic the behavior of experienced designers in well generation, we propose a generative adversarial network (GAN) guided well generation framework with a post-refinement stage leveraging the previous high-quality manually-crafted layouts. Guiding regions for wells are first created by a trained GAN model, after which the well generation results are legalized through post-refinement to satisfy design rules. Experimental results show that the proposed technique is able to generate wells close to manual designs with comparable post-layout circuit performance.
Mukherjee A, Gandara M, Xu B, Li S, Shen L, TANG X, Pan D, Sun N. A 1-GS/s 20 MHz-BW Capacitive-Input Continuous-Time $ΔΣ$ ADC Using a Novel Parasitic Pole-Mitigated Fully Differential VCO. IEEE Solid-State Circuits Letters. 2019;2:1-4.Abstract
This letter presents a high-speed closed-loop capacitive-input voltage controlled oscillators (VCO)-based continuous-time delta sigma modulator (CTDSM) using a novel fully differential VCO topology whose parasitic pole is inherently located at a very high frequency, regardless of the number of inverters in the ring VCO. The mitigation of the parasitic pole is achieved by splitting the VCO's input transconductor into a set of distributed input transistors. Capacitive input and capacitive DAC result in a very low thermal noise front end, besides ensuring that there is no additional pole caused due to the VCO's input capacitance. A single pair of pseudo-resistors is used for providing dc negative feedback in the CTDSM. The prototype first-order 63-stage VCO-based CTDSM is fabricated in 40-nm CMOS and occupies a core area of 0.02 mm2 while achieving 63.1-dB dynamic range in 480 kHz-20.48 MHz bandwidth at 1 GS/s. This is the first work to mitigate the parasitic pole in a fully differential VCO, without relying on any additional active circuits. To the authors' best knowledge, this is also the first work to demonstrate the capacitive input in a high-speed CTDSM, without using chopping.
Shen L, Mukherjee A, Li S, TANG X, Lu N, Sun N. A 0.6-V Tail-Less Inverter Stacking Amplifier with 0.96 PEF, in 2019 Symposium on VLSI Circuits.; 2019:C144-C145.
TANG X, Li S, Shen L, Zhao W, Yang X, Williams R, Liu J, Tan Z, Hall N, Sun N. 18.2 A 16fJ/Conversion-Step Time-Domain Two-Step Capacitance-to-Digital Converter, in 2019 IEEE International Solid- State Circuits Conference - (ISSCC).; 2019:296-297.
Shen L, Shen Y, TANG X, Hsu C-K, Shi W, Li S, Zhao W, Mukherjee A, Sun N. 3.4 A 0.01mm2 25µW 2MS/s 74dB-SNDR Continuous-Time Pipelined-SAR ADC with 120fF Input Capacitor, in 2019 IEEE International Solid- State Circuits Conference - (ISSCC).; 2019:64-66.
2018
Shen L, Lu N, Sun N. A 1-V 0.25- $μ \textW$ Inverter Stacking Amplifier With 1.07 Noise Efficiency Factor. IEEE Journal of Solid-State Circuits. 2018;53:896-905.Abstract
This paper presents a highly power-efficient amplifier. By stacking inverters and splitting the capacitor feedback network, the proposed amplifier achieves six-time current reuse, thereby significantly boosting the transconductance and lowering noise but without increasing the current consumption. A novel biasing scheme is devised to ensure robust operation under 1-V supply. A prototype in 180-nm CMOS has 5.5-μVrms noise within 10-kHz BW while consuming only 0.25-μW power, leading to a noise efficiency factor of 1.07, which is the best among reported amplifiers.
2017
Shen L, Lu N, Sun N. A 1V 0.25uW inverter-stacking amplifier with 1.07 noise efficiency factor, in 2017 Symposium on VLSI Circuits.; 2017:C140-C141.Abstract
This paper presents a highly power efficient amplifier. By stacking inverters and splitting the capacitor feedback network, the proposed amplifier achieves 6-time current reuse, thereby significantly boosting gm and lowering noise but without increasing power. A novel biasing scheme is devised to ensure robust operation under 1V supply. A prototype in 180nm CMOS has 5.5uV rms noise within 10kHz BW while consuming only 0.25uW, leading to a noise efficiency factor (NEF) of 1.07, which is the best among reported amplifiers.

Pages