科研成果 by Year: 2024

2024
Su Z, Cui S, Wen D, Chen L. Metagenomic insights into resistome, mobilome and virulome in different fecal waste. Environmental Research [Internet]. 2024;262:119861. 访问链接Abstract
Fecal waste is a significant source of antimicrobial resistance (AMR) pollution and provides valuable insights into the AMR development in animal and human populations within the “One health” framework. Various genetic elements, including antibiotic resistance genes (ARGs), biocide and metal resistance genes (BMGs), mobile genetic elements (MGEs), and virulence factor genes (VFGs), are crucial AMR risk determinants (ARDs). However, few studies focused on compositional characteristics of ARDs in different feces. Here, we analyzed 753 public metagenomes from human, pig, chicken, and cattle feces, revealing significant differences in ARD richness and abundance across fecal types, notably lowest in cattle samples. Tetracycline, multi-metal, and -biocide resistance genes were dominant resistome. A few core genes contributed to 25.6%–91.1% of gene abundance, and their correlations were stronger in cattle samples. Procrustes analysis showed that microbial composition had higher correlations with ARGs (M2 = 0.579) and BMGs (M2 = 0.519). Gammaproteobacteria was identified as major ARD-hosts especially in human and pig feces, and they mainly carried multi-resistance genes. MGEs exhibited direct positive effects on ARGs and BMGs, indirectly impacting VFGs. Utilizing random forest methods, we identified 42 indicator genes for tracking AMR pollution originating from fecal sources in the environments. This study offers new insights into understanding and controlling the AMR pollution of fecal waste from human and food animals.
Wei J, Chen W, Wen D. Rare biosphere drives deterministic community assembly, co-occurrence network stability, and system performance in industrial wastewater treatment system. Environment International [Internet]. 2024;190:108887. 访问链接Abstract
Bacterial community is strongly associated with activated sludge performance, but there still remains a knowledge gap regarding the rare bacterial community assembly and their influence on the system performance in industrial wastewater treatment plants (IWWTPs). Here, we investigated bacterial communities in 11 full-scale IWWTPs with similar process designs, aiming to uncover ecological processes and functional traits regulating abundant and rare communities. Our findings indicated that abundant bacterial community assembly was governed by stochastic processes; thereby, abundant taxa are generally present in wastewater treatment compartments across different industrial types. On the contrary, rare bacterial taxa were primarily driven by deterministic processes (homogeneous selection 61.9%-79.7%), thus they only exited in specific IWWTPs compartments and wastewater types. The co-occurrence networks analysis showed that the majority of keystone taxa were rare bacterial taxa, with rare taxa contributing more to network stability. Furthermore, rare bacteria rather than abundant bacteria in the oxic compartment contributed more to the degradation of xenobiotics compounds, and they were main potential drivers of pollutant removal. This study demonstrated the irreplaceable roles of rare bacterial taxa in maintaining system performance of IWWTPs, and called for environmental engineers and microbial ecologists to increase their attention on rare biosphere.
Xiong F, Dai T, Zheng Y, Wen D, Li Q. Enhanced AHL-mediated quorum sensing accelerates the start-up of biofilm reactors by elevating the fitness of fast-growing bacteria in sludge and biofilm communities. Water Research [Internet]. 2024;257:121697. 访问链接Abstract
Quorum sensing (QS)-based manipulations emerge as a promising solution for biofilm reactors to overcome challenges from inefficient biofilm formation and lengthy start-ups. However, the ecological mechanisms underlying how QS regulates microbial behaviors and community assembly remain elusive. Herein, by introducing different levels of N-acyl-homoserine lactones, we manipulated the strength of QS during the start-up of moving bed biofilm reactors and compared the dynamics of bacterial communities. We found that enhanced QS elevated the fitness of fast-growing bacteria with high ribosomal RNA operon (rrn) copy numbers in their genomes in both the sludge and biofilm communities. This led to notably increased extracellular substance production, as evidenced by strong positive correlations between community-level rrn copy numbers and extracellular proteins and polysaccharides (Pearson's r = 0.529−0.830, P < 0.001). Network analyses demonstrated that enhanced QS significantly promoted the ecological interactions among taxa, particularly cooperative interactions. Bacterial taxa with higher network degrees were more strongly correlated with extracellular substances, suggesting their crucial roles as public goods in regulating bacterial interactions and shaping network structures. However, the assembly of more cooperative communities in QS-enhanced reactors came at the cost of decreased network stability and modularity. Null model and dissimilarity-overlap curve analysis revealed that enhanced QS strengthened stochastic processes in community assembly and rendered the universal population dynamics more convergent. Additionally, these shaping effects were consistent for both the sludge and biofilm communities, underpinning the planktonic-to-biofilm transition. This work highlights that QS manipulations efficiently drive community assembly and confer specialized functional traits to communities by recruiting taxa with specific life strategies and regulating interspecific interactions. These ecological insights deepen our understanding of the rules governing microbial societies and provide guidance for managing engineering ecosystems.
Zheng Y, Su Z, Liu D, Huang B, Mu Q, Li Y, Wen D. Metagenomics reveals the influence of small microplastics on microbial communities in coastal sediments. Science of The Total EnvironmentScience of The Total Environment [Internet]. 2024;914:169982. 访问链接Abstract
The ecological impact of microplastics (MPs) in coastal environments has been widely studied. However, the influence of small microplastics in the actual environment is often overlooked due to measurement challenges. In this study, Hangzhou Bay (HZB), China, was selected as our study area. High-throughput metagenomic sequencing and micro-Raman spectrometry were employed to analyze the microbial communities and microplastics of coastal sediment samples, respectively. We aimed to explore the ecological impact of MPs with small sizes (≤ 100 μm) in real coastal sediment environments. Our results revealed that as microplastic size decreased, the environmental behavior of MPs underwent alterations. In the coastal sediments, no significant correlations were observed between the detected MPs and the whole microbial communities, but small MPs posed potential hazards to eukaryotic communities. Moreover, these small MPs were more prone to microbial degradation and significantly affected carbon metabolism in the habitat. This study is the first to reveal the comprehensive impact of small MPs on microbial communities in a real coastal sediment environment.