科研成果 by Year: 2016

2016
Dai T, Zhang Y, Tang Y, Bai Y, Tao Y, Huang B, Wen D. Identifying the key taxonomic categories that characterize microbial community diversity using full-scale classification: a case study of microbial communities in the sediments of Hangzhou Bay. FEMS Microbiology Ecology [Internet]. 2016;92(10):fiw150. 访问链接Abstract
Coastal areas are land–sea transitional zones with complex natural and anthropogenic disturbances. Microorganisms in coastal sediments adapt to such disturbances both individually and as a community. The microbial community structure changes spatially and temporally under environmental stress. In this study, we investigated the microbial community structure in the sediments of Hangzhou Bay, a seriously polluted bay in China. In order to identify the roles and contribution of all microbial taxa, we set thresholds as 0.1% for rare taxa and 1% for abundant taxa, and classified all operational taxonomic units into six exclusive categories based on their abundance. The results showed that the key taxa in differentiating the communities are abundant taxa (AT), conditionally abundant taxa (CAT), and conditionally rare or abundant taxa (CRAT). A large population in conditionally rare taxa (CRT) made this category collectively significant in differentiating the communities. Both bacteria and archaea demonstrated a distance decay pattern of community similarity in the bay, and this pattern was strengthened by rare taxa, CRT and CRAT, but weakened by AT and CAT. This implied that the low abundance taxa were more deterministically distributed, while the high abundance taxa were more ubiquitously distributed.
Zhang Y, Chen L, Sun R, Dai T, Tian J, Zheng W, Wen D. Population and diversity of ammonia-oxidizing archaea and bacteria in a pollutants’ receiving area in Hangzhou Bay. Applied Microbiology and Biotechnology [Internet]. 2016;100(13):6035-6045. 访问链接Abstract
The community structure of ammonia-oxidizing microorganisms is sensitive to various environmental factors, including pollutions. In this study, real-time PCR and 454 pyrosequencing were adopted to investigate the population and diversity of ammonia-oxidizing archaea (AOA) and bacteria (AOB) temporally and spatially in the sediments of an industrial effluent receiving area in the Qiantang River’s estuary, Hangzhou Bay. The abundances of AOA and AOB amoA genes fluctuated in 105–107 gene copies per gram of sediment; the ratio of AOA amoA/AOB amoA ranged in 0.39–5.52. The AOA amoA/archaeal 16S rRNA, AOB amoA/bacterial 16S rRNA, and AOA amoA/AOB amoA were found to positively correlate with NH4+-N concentration of the seawater. Nitrosopumilus cluster and Nitrosomonas-like cluster were the dominant AOA and AOB, respectively. The community structures of both AOA and AOB in the sediments exhibited significant seasonal differences rather than spatial changes in the effluent receiving area. The phylogenetic distribution of AOB in this area was consistent with the wastewater treatment plants (WWTPs) discharging the effluent but differed from the Qiantang River and other estuaries, which might be an outcome of long-term effluent discharge.
Zhang Y, Chen L, Sun R, Dai T, Tian J, Zheng W, Wen D. Temporal and spatial changes of microbial community in an industrial effluent receiving area in Hangzhou Bay. Journal of Environmental Sciences [Internet]. 2016;44:57-68. 访问链接Abstract
Anthropogenic activities usually contaminate water environments, and have led to the eutrophication of many estuaries and shifts in microbial communities. In this study, the temporal and spatial changes of the microbial community in an industrial effluent receiving area in Hangzhou Bay were investigated by 454 pyrosequencing. The bacterial community showed higher richness and biodiversity than the archaeal community in all sediments. Proteobacteria dominated in the bacterial communities of all the samples; Marine_Group_I and Methanomicrobia were the two dominant archaeal classes in the effluent receiving area. PCoA and ANOVA revealed strong seasonal but minor spatial changes in both bacterial and archaeal communities in the sediments. The seasonal changes of the bacterial community were less significant than those of the archaeal community, which mainly consisted of fluctuations inabundance of a large proportion of longstanding species rather than the appearance and disappearance ofmajor archaeal species. Temperaturewas found to positively correlatewith the dominant bacteria, Betaproteobacteria, and negatively correlate with the dominant archaea,Marine_Group_I; and might be the primary driving force for the seasonal variation of the microbial community.
陶怡乐, 温东辉. 细菌硝酸盐异化还原成铵过程及其在河口生态系统中的潜在地位与影响. 微生物学通报 [Internet]. 2016;43(1):172-181. 访问链接AbstractPKU 
细菌硝酸盐异化还原成铵(DNRA)过程能够将河口沉积物中的硝氮转化为氨氮,是河口生态系统中潜在的重要氮循环过程之一。本文介绍DNRA机理与分类,综述河口生态系统中DNRA的地位与影响,并总结河口生态系统中几种重要生态因子对DNRA过程的调控与影响。目前DNRA的机理还有待完善。深入研究各类河口生态系统中环境因子对DNRA的调控与影响机制,并研发新的研究方法,将为我国河口地区的水资源保护和生态治理提供科学依据。
Yu C, Li X, Zhang N, Wen D, Liu C, Li Q. Inhibition of biofilm formation by D-tyrosine: Effect of bacterial type and D-tyrosine concentration. Water research [Internet]. 2016;92:173-9. 访问链接Abstract
D-Tyrosine inhibits formation and triggers disassembly of bacterial biofilm and has been proposed for biofouling control applications. This study probes the impact of D-tyrosine in different biofilm formation stages in both G+ and G- bacteria, and reveals a non-monotonic correlation between D-tyrosine concentration and biofilm inhibition effect. In the attachment stage, cell adhesion was studied in a flow chamber, where D-tyrosine caused significant reduction in cell attachment. Biofilms formed by Pseudomonas aeruginosa and Bacillus subtilis were characterized by confocal laser scanning microscopy as well as quantitative analysis of cellular biomass and extracellular polymeric substances. D-Tyrosine exhibited strong inhibitive effects on both biofilms with  an effective concentration as low as 5 nM; the biofilms responded to D-tyrosine concentration change in a non-monotonic, bi-modal pattern. In addition, D-tyrosine showed notable and different impact on EPS production by G+ and G- bacteria. Extracellular protein was decreased in P. aeruginosa biofilms, but increased in those of B. subtilis. Exopolysaccharides production by P. aeruginosa was increased at low concentrations and reduced at high concentrations while no impact was found in B. subtilis. These results suggest that distinct mechanisms are at play at different D-tyrosine concentrations and they may be species specific. Dosage of D-tyrosine must be carefully controlled for biofouling control applications.
张楠, 熊富忠, 温东辉, 于聪, 李琪琳. 环境因素对降解型生物膜形成的影响. 北京大学学报(自然科学版) [Internet]. 2016;52(2):345-353. 访问链接Abstract
采用改良微孔板法,考察p H、温度、培养时间和目标污染物浓度4个环境因子对3株氮杂环芳烃降解菌成膜的影响。结果表明,p H、温度、培养时间对生物膜的形成影响显著,且各降解菌的最佳成膜条件分别为:BC026成膜的最适p H为7,最适温度为35℃,培养时间为36小时;BW001成膜的最适p H为8,最适温度为35℃,培养时间为48小时;BW004成膜的最适p H为7~9,最适温度为40℃,培养时间为36小时。在0~1600 mg/L的目标污染物浓度内,目标污染物对生物膜形成的影响不显著。