科研成果 by Year: 2021

2021
熊富忠, 温东辉. 难降解工业废水高效处理技术与理论的新进展. 环境工程 [Internet]. 2021;39(11):1-15+40. 访问链接AbstractPKU 
难降解工业废水高效处理是制约我国经济发展与环境保护的重大问题,近年来我国及其他国家在该领域取得了技术和理论上的巨大进步。首先总结了工业废水预处理-生物处理-深度处理三级处理体系的技术全貌,对各级处理单元具有代表性的技术及其适用性、发展趋势进行了讨论;其次重点论述了在污染物降解途径识别、微生物群落结构和功能解析、高风险污染物生态和健康风险评价等方面的理论探索。在我国大力推进生态文明建设、实施绿色低碳发展战略的背景下,日益多元化和系统化的废水治理技术与理论体系将深刻影响未来工业发展的布局和路径。
Yingyu Bao, Li F, Chen L, Mu Q, Huang B, Wen D. Fate of antibiotics in engineered wastewater systems and receiving water environment: A case study on the coast of Hangzhou Bay, China. Science of the Total Environment [Internet]. 2021;769:144642. 访问链接Abstract
The occurrence of man-made antibiotics in natural environment has aroused attentions from both scientists and publics. However, few studies tracked antibiotics from their production site to the end of disposal environment. Taking the coastal region of Hangzhou Bay as the study area, the fate of 77 antibiotics from 6 categories in two-step wastewater treatment plants (WTPs, i.e. pharmaceutical WTP and integrated WTP) was focused; and the antibiotics in both dissolved and adsorbed phases were investigated simultaneously in this study. The ubiquitous occurrence of antibiotics was observed in the two-step WTPs, with antibiotic concentrations following the order of PWTP (LOQ - 1.0 × 105 ng·L−1) > IWTPi (for industrial wastewater treatment, LOQ - 3.7 × 103 ng·L−1) > IWTPd (for domestic sewage treatment, LOQ - 1.3 × 103 ng·L−1). And the types of antibiotics detected in excess sludge and suspended particles were in accordance with those in wastewater. Quinolones were invariably dominant in both dissolved and adsorbed fractions. High removal efficiencies (median values >50.0%) were acquired for the dissolved quinolones (except for DFX), tetracyclines, β-lactams, and lincosamides. Anaerobic/anoxic/oxic achieved the highest aqueous removal of antibiotics among the investigated treatment technologies in the three WTPs. PWTP and IWTP removed 9797 and 487 g·d−1 of antibiotics, respectively; and a final effluent with 126.4 g·d−1 of antibiotics was discharged into the effluent-receiving area (ERA) of Hangzhou Bay. Source apportionment analysis demonstrated that the effluents of IWTPd and IWTPd contributed respectively 39.3% and 8.9% to the total antibiotics in the ERA. The results illustrate quantitatively the antibiotic flows from engineered wastewater systems to natural water environment, on the basis of which the improvements of wastewater treatment technologies and discharge management would be put forward.
Tao Y, Zhang L, Su Z, Dai T, Zhang Y, Huang B, Wen D. Nitrogen-cycling gene pool shrunk by species interactions among denser bacterial and archaeal community stimulated by excess organic matter and total nitrogen in a eutrophic bay. Marine Environmental Research [Internet]. 2021;169:105397. 访问链接Abstract
Microbial densities, functional genes, and their responses to environment factors have been studied for years, but still a lot remains unknown about their interactions with each other. In this study, the abundances of 7 nitrogen cycling genes in the sediments from Hangzhou Bay were analyzed along with bacterial and archaeal 16S rRNA abundances as the biomarkers of their densities. The amount of organic matter (OM) and total nitrogen (TN) strongly positively correlated with each other and microbial densities, while total phosphate (TP) and ammonia-nitrogen (NH3–N) did not. Most studied genes were density suppressed, while nirS was density stable, and nosZ and hzo were density irrelevant. This suggests eutrophication could limit inorganic nitrogen cycle pathways and the removal of nitrogen in the sediment and emit more greenhouse gases. This study provides a new insight of microbial community structures, functions and their interactions in the sediments of eutrophic bays.
Chen J, Dai T, Lei Z, Shimizu K, Wen D, Zhang Z. Historical exposure to wastewater disposal reinforces the stability of sediment bacterial community in response to future disturbance. Blue-Green Systems [Internet]. 2021;3(1). 访问链接Abstract
Given that long-term treated wastewater discharge may alter the microbial community of the recipient coast, it is important to evaluate whether and how the community's stability is impacted. We constructed microcosms using coastal sediments with (near-coast) and without (far-coast) a wastewater disposal history and compared the communities’ responses to p-chloroaniline (PCAN, a typical organic pollutant) in low (10 mg/L) and high (100 mg/L) concentrations. Compared to the far-coast community, the near-coast community drove faster PCAN attenuation and nitrate generation. More significant negative correlations were observed between the alpha-diversity indices and PCAN concentrations in the far-coast communities than the near-coast ones. The community turnover rate, represented by the slopes of the time–decay curves, was slower for the near-coast community (−0.187) than that for the far-coast community (−0.233), but only when the PCAN was added in low concentration. Our study revealed that the long-term wastewater disposal may cause the sediment bacterial community to be less sensitive and more stable in response to a future disturbance, demonstrating a significant historical effect of environmental context on the coastal microbial community's stability.
Yao P, Chen L, Zhang Y, Wen D. The pre-oxidation kinetics and mechanism of sulfapyridine for biodegradability improvement. Journal of Cleaner Production [Internet]. 2021;329:129698. 访问链接Abstract
Oxidation of sulfapyridine (SPY) by typical oxidant, hydrogen peroxide (H2O2) and/or potassium peroxydisulfate (PDS), was used as a pre-treatment for antibiotic wastewater. The degradation dynamics showed that SPY was successfully removed, and the trend was fitted to the first-order reaction kinetics. H2O2 removed SPY more efficiently in acid condition than in basic condition, while PDS was the opposite. Better performance was achieved by using PDS than using H2O2, but combined using of PDS and H2O2 got the best performance. Although SPY was oxidized by those oxidants and biodegradability was improved, the intermediates still exhibited antibacterial activity. The degradation pathways and mechanism of SPY were deduced through density functional theory (DFT) and evidenced by intermediates product detection. Nucleophilic attack and radical attack were determined to be the major attack pathways in H2O2 and PDS systems, respectively. The SPY degradation pathways proposed in the two systems were based on the cleavage of bonds and hydroxyl substitution. Additionally, intermediate ΔG value showed that stubborn molecules remained in the wastewater even after pre-oxidation, which is harmful for further bio-treatment. This study provides a new insight for the improvement of biodegradability and the efficient degradation of SPY in antibiotic wastewater.
Su Z, Wen D. Characterization of antibiotic resistance across Earth's microbial genomes. Science of the Total Environment [Internet]. 2021;816:151613. 访问链接Abstract
Widespread antibiotic resistance across Earth's habitats has become a critical health concern. However, large-scale investigation on the distribution of antibiotic resistance genes (ARGs) in the microbiomes from most types of ecosystem is still lacking. In this study, we provide a comprehensive characterization of ARGs for 52,515 microbial genomes covering various Earth's ecosystems, and conduct the risk assessment for ARG-carrying species based on further identification of mobile genetic elements (MGEs) and virulence factor genes (VFGs). We identify a total of 6159 ARG-carrying metagenome-assembled genomes (ACMs), and most of them are recovered from human gut and city subway. Our results show that efflux pump is the most common mechanism for bacteria to acquire multidrug resistance genes in Earth's microbiomes. Enterobacteriaceae species are the largest hosts of ARGs, accounting for 14% of total ACMs with 64% of the total ARG hits. Most of ARG-carrying species are unique in the different ecosystem categories, while 33 potential background ARGs are commonly shared by all ecosystem categories. We then detect 36 high-risk ARGs that likely threat public health in all ACMs. Based on ranking the importance of ARG-carrying species in the different ecosystem categories, several bacterial taxa such as Escherichia coliEnterococcus faecalis, and Pseudomonas_A stutzeri are recognized as priority species for surveillance and control. Overall, our study gives a broad view of ARG-host associations in the environments.
Li F, Wen D, Yingyu Bao, Huang B, Mu Q, Chen L. Insights into the distribution, partitioning and influencing factors of antibiotics concentration and ecological risk in typical bays of the East China Sea. Chemosphere [Internet]. 2021;2021:132566. 访问链接Abstract
In order to obtain in-depth insight of the behavioral fate and ecological risks of antibiotics in coastal environment, this study investigated the distribution, partitioning and primary influencing factors of antibiotics in water and sediment in the East China Sea. After quantification of 77 target antibiotics in 6 categories, ten antibiotics were detected simultaneously with a detection frequency >50.0% in water and sediment; the concentrations of these ten antibiotics were 0.1–1508.0 ng L−1 and 0.01–9.4 ng g−1 in water and dry sediment, respectively. Sulfadiazine and Azithromycin (Pseudo partitioning coefficient were 28–3814 L kg−1 and 21–2405 L kg−1, respectively.) had the largest partitioning coefficient between sediment and water. In addition, pseudo partitioning coefficient of Sulfadiazine and Clindamycin were higher than the values of corresponding equilibrium partitioning constant (Kd), which would likely cause them to re-release from sediment to water. Compared to the physiochemical properties of the sediment, water quality has a greater impact on antibiotic partitioning. We found that the partitioning of antibiotics was significantly positively correlated with salinity, suspended solids, pH, NH4+-N and Zn; and negatively correlated with temperature, dissolved oxygen, PO43−, chemical oxygen demand, NO3−-N, oil, Cu and Cd. The ecological risks of antibiotics in water and sediment were also evaluated for revealing their relationship with the concentration partitioning of antibiotics. Results showed that the target antibiotics mainly pose ecological risks to Daphnia with low and median chronic toxicity risk rather than fish and green algae. The antibiotics in sediment were more chronically toxic to Daphnia than that in water. The risk quotient ratio of sediment and water (RQs/RQw) ranged from 0 to 1154.0, which were exactly opposite of the values of organic carbon normalized partition coefficient (Koc), suggesting that the physical properties of antibiotics drove the ecological risk allocation of antibiotics in sediment and water.
Chen W, Wen D. Archaeal and bacterial communities assembly and co-occurrence networks in subtropical mangrove sediments under Spartina alterniflora invasion. Environmental Microbiome [Internet]. 2021;16(1):10. 访问链接Abstract
Background Mangrove ecosystems are vulnerable due to the exotic Spartina alterniflora (S. alterniflora) invasion in China. However, little is known about mangrove sediment microbial community assembly processes and interactions under S. alterniflora invasion. Here, we investigated the assembly processes and co-occurrence networks of the archaeal and bacterial communities under S. alterniflora invasion along the coastlines of Fujian province, southeast China. Results Assembly of overall archaeal and bacterial communities was driven predominantly by stochastic processes, and the relative role of stochasticity was stronger for bacteria than archaea. Co-occurrence network analyses showed that the network structure of bacteria was more complex than that of the archaea. The keystone taxa often had low relative abundances (conditionally rare taxa), suggesting low abundance taxa may significantly contribute to network stability. Moreover, S. alterniflora invasion increased bacterial and archaeal drift process (part of stochastic processes), and improved archaeal network complexity and stability, but decreased the network complexity and stability of bacteria. This could be attributed to S. alterniflora invasion influenced microbial communities diversity and dispersal ability, as well as soil environmental conditions. Conclusions This study fills a gap in the community assembly and co-occurrence patterns of both archaea and bacteria in mangrove ecosystem under S. alterniflora invasion. Thereby provides new insights of the plant invasion on mangrove microbial biogeographic distribution and co-occurrence network patterns.