科研成果 by Type: 期刊论文

2022
Xu W. Increasing importance of ammonia emission abatement in PM2.5pollution control. Science Bulletin [Internet]. 2022. 访问链接
Liu L, Xu W, Lu X, Zhong B, Guo Y, Lu X, Zhao Y, He W, Wang S, Zhang X, et al. Exploring global changes in agricultural ammonia emissions and their contribution to nitrogen deposition since 1980. Proceedings of the National Academy of Sciences [Internet]. 2022;119:e2121998119. 访问链接Abstract
Agricultural systems are already major forces of ammonia pollution and environmental degradation. How agricultural ammonia emissions affect the spatio-temporal patterns of nitrogen deposition and where to target future mitigation efforts, remains poorly understood. We develop a substantially complete and coherent agricultural ammonia emissions dataset in nearly recent four decades, and evaluate the relative role of reduced nitrogen in total nitrogen deposition in a spatially explicit way. Global reduced nitrogen deposition has grown rapidly, and will occupy a greater dominant position in total nitrogen deposition without future ammonia regulations. Recognition of agricultural ammonia emissions on nitrogen deposition is critical to formulate effective policies to address ammonia related environmental challenges and protect ecosystems from excessive nitrogen inputs. Global gains in food production over the past decades have been associated with substantial agricultural nitrogen overuse and ammonia emissions, which have caused excessive nitrogen deposition and subsequent damage to the ecosystem health. However, it is unclear which crops or animals have high ammonia emission potential, how these emissions affect the temporal and spatial patterns of nitrogen deposition, and where to target future abatement. Here, we develop a long-term agricultural ammonia emission dataset in nearly recent four decades (1980–2018) and link it with a chemical transport model for an integrated assessment of global nitrogen deposition patterns. We found global agricultural ammonia emissions increased by 78% from 1980 and 2018, in which cropland ammonia emissions increased by 128%, and livestock ammonia emissions increased by 45%. Our analyses demonstrated that three crops (wheat, maize, and rice) and four animals (cattle, chicken, goats, and pigs) accounted for over 70% total ammonia emissions. Global reduced nitrogen deposition increased by 72% between 1980 and 2018 and would account for a larger part of total nitrogen deposition due to the lack of ammonia regulations. Three countries (China, India, and the United States) accounted for 47% of global ammonia emissions, and had substantial nitrogen fertilizer overuse. Nitrogen deposition caused by nitrogen overuse accounted for 10 to 20% of total nitrogen deposition in hotspot regions including China, India, and the United States. Future progress toward reducing nitrogen deposition will be increasingly difficult without reducing agricultural ammonia emissions.
Guo Y, He P, Searchinger TD, Chen Y, Springmann M, Zhou M, Zhang X, Zhang L, Mauzerall DL. Environmental and human health trade-offs in potential Chinese dietary shifts. One Earth [Internet]. 2022;(March). pdfAbstract
Dietary shifts from staples toward meats, fruits, and vegetables increase environmental impacts. Excessive red meat intake and micro-nutrient deficiencies also raise health concerns. Previous research examined environmental and health consequences of alternative diets but overlooked impacts on air pollution and land use change. Here we examine implications of four potential Chinese dietary shifts on ammonia and particulate matter (PM2.5) air pollution, greenhouse gas (GHG) emissions, carbon storage loss associated with land-use change, water use, and human health. We show that a diet that replaces red meat with soy benefits the environment and avoids 57,000 PM2.5-related premature deaths annually. Dietary health benefits, however, appear larger with adoption of the Chinese Dietary Guideline (CDG) and EAT-Lancet diets, which prevent over one million premature deaths annually. However, both diets increase water use and GHGs. CDG also increases COCs, but EAT-Lancet reduces it by cutting dairy and red meat. Complex benefits and trade-offs of dietary shifts emphasize the need for further improvements in agricultural management to enable larger health-environment co-benefits.
2021
Chen Y, Zhang L, Henze DK, Zhao Y, Lu X, Winiwarter W, Guo Y, Liu X, Wen Z, Pan Y, et al. Interannual variation of reactive nitrogen emissions and their impacts on PM2.5 air pollution in China during 2005–2015. Environmental Research Letters [Internet]. 2021;16:125004. pdfAbstract
Emissions of reactive nitrogen as ammonia (NH3) and nitrogen oxides (NO x ), together with sulfur dioxide (SO2), contribute to formation of secondary PM2.5 in the atmosphere. Satellite observations of atmospheric NH3, NO2, and SO2 levels since the 2000s provide valuable information to constrain the spatial and temporal variability of their emissions. Here we present a bottom-up Chinese NH3 emission inventory combined with top-down estimates of Chinese NO x and SO2 emissions using ozone monitoring instrument satellite observations, aiming to quantify the interannual variations of reactive nitrogen emissions in China and their contributions to PM2.5 air pollution over 2005–2015. We find small interannual changes in the total Chinese anthropogenic NH3 emissions during 2005–2016 (12.0–13.3 Tg with over 85% from agricultural sources), but large interannual change in top-down Chinese NO x and SO2 emissions. Chinese NO x emissions peaked around 2011 and declined by 22% during 2011–2015, and Chinese SO2 emissions declined by 55% in 2015 relative to that in 2007. Using the GEOS-Chem chemical transport model simulations, we find that rising atmospheric NH3 levels in eastern China since 2011 as observed by infrared atmospheric sounding interferometer and atmospheric infrared sounder satellites are mainly driven by rapid reductions in SO2 emissions. The 2011–2015 Chinese NO x emission reductions have decreased regional annual mean PM2.5 by 2.3–3.8 μg m−3. Interannual PM2.5 changes due to NH3 emission changes are relatively small, but further control of agricultural NH3 emissions can be effective for PM2.5 pollution mitigation in eastern China.
Liu Z, Ying H, Chen M, Bai J, Xue Y, Yin Y, Batchelor WD, Yang Y, Bai Z, Du M, et al. Optimization of China’s maize and soy production can ensure feed sufficiency at lower nitrogen and carbon footprints. Nature Food [Internet]. 2021;2:426–433. pdfAbstract
China purchases around 66% of the soy that is traded internationally. This strains the global food supply and contributes to greenhouse gas emissions. Here we show that optimizing the maize and soy production of China can improve its self-sufficiency and also alleviate adverse environmental effects. Using data from more than 1,800 counties in China, we estimate the area-weighted yield potential (Ypot) and yield gaps, setting the attainable yield (Yatt) as the yield achieved by the top 10% of producers per county. We also map out county-by-county acreage allocation and calculate the attainable production capacity according to a set of sustainability criteria. Under optimized conditions, China would be able to produce all the maize and 45% of the soy needed by 2035—while reducing nitrogen fertilizer use by 26%, reactive nitrogen loss by 28% and greenhouse gas emissions by 19%—with the same acreage as 2017, our reference year.
Ma R, Li K, Guo Y, Zhang B, Zhao X, Linder S, Guan CH, Chen G, Gan Y, Meng J. Mitigation potential of global ammonia emissions and related health impacts in the trade network. Nature Communications [Internet]. 2021;12:6308. pdfAbstract
Ammonia (NH3) emissions, mainly from agricultural sources, generate substantial health damage due to the adverse effects on air quality. NH3 emission reduction strategies are still far from being effective. In particular, a growing trade network in this era of globalization offers untapped emission mitigation potential that has been overlooked. Here we show that about one-fourth of global agricultural NH3 emissions in 2012 are trade-related. Globally they induce 61 thousand PM2.5-related premature mortalities, with 25 thousand deaths associated with crop cultivation and 36 thousand deaths with livestock production. The trade-related health damage network is regionally integrated and can be characterized by three trading communities. Thus, effective cooperation within trade-dependent communities will achieve considerable NH3 emission reductions allowed by technological advancements and trade structure adjustments. Identification of regional communities from network analysis offers a new perspective on addressing NH3 emissions and is also applicable to agricultural greenhouse gas emissions mitigation.
2020
Guo Y, Chen Y, Searchinger TD, Zhou M, Pan D, Yang J, Wu L, Cui Z, Zhang W, Zhang F, et al. Air quality, nitrogen use efficiency and food security in China are improved by cost-effective agricultural nitrogen management. Nature Food [Internet]. 2020;1:648–658. pdfAbstract
China’s gains in food production over the past four decades have been associated with substantial agricultural nitrogen losses, which contribute to air and water pollution, greenhouse gas emissions and damage to human health. Here, we explore the potential to improve agricultural production practices that simultaneously increase yields while addressing these environmental challenges. We link agronomic research with air quality modelling for an integrated assessment of four improved nitrogen management strategies: improved farm management practices with nitrogen use reductions; machine deep placement of fertilizer; enhanced-efficiency fertilizer use; and improved manure management. We find that simultaneous implementation of the four strategies provides the largest benefits, which include: reductions in PM2.5 concentrations and associated premature deaths; increases in grain yields and grain nitrogen use efficiency; reductions in NO3− leaching and runoff and greenhouse gas emissions. Total benefits of US\$30 billion per year exceed the US\$18 billion per year in costs. Our findings indicate that policies that improve farmers’ agricultural nitrogen management in China will improve both food security and public health while addressing multiple environmental challenges. Similar increases in attention on agricultural policy around the world are likely to provide large benefits in food security, environmental integrity and public health.
2017
Guo Y, Liu J, Mauzerall DL, Li X, Horowitz LW, Tao W, Tao S. Long-Lived Species Enhance Summertime Attribution of North American Ozone to Upwind Sources. Environmental Science and Technology [Internet]. 2017;51:5017–5025. pdf