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Soy and maize are feed grains that figure prominently in the 
global food security and sustainability agenda. Soy and 
maize account for 51% of all cereal grains produced globally. 

Since 2000, their trade on the international market has increased 
by 217% in quantity (from 135 to 293 million tons) and 424% in 
value (from US$21 to 89 billion), exceeding all other cereal grains1. 
Associated with soy and maize production are enormous environ-
mental impacts1–5. For example, land expansion for soy produc-
tion totalled 47.6 Mha since 2000, of which 44% occurred in the 
Brazilian Amazon and Cerrado regions, resulting in deforestation 
with substantial carbon losses and ecosystem damages1,2,6,7. As staple 
feed grains that are essential in modern livestock production, the 
heightened demands for soy and maize are closely linked with the 
growing appetite for animal-source foods (meats, milk, and eggs), 
particularly in developing economies8–10.

China has an important role in this area. From 2000 to 2017, the 
per capita consumption of meat, milk and eggs increased by 75%, 
150% and 38%, respectively11. Meanwhile, annual domestic con-
sumption of maize and soy went up from 117.8 to 261.8 Mt and from 
24.6 to 108.7 Mt, respectively1. The country managed to maintain 
its self-sufficiency for maize but became increasingly dependent on 
importation for soy. By 2017, China bought 66% of the soy traded 
on the international market to meet 90% of its domestic needs1.

The consequences of the lopsided maize–soy production situa-
tion in China are multifaceted2,3,6,7. Domestically, China’s maize pro-
duction is widely known for high inputs (for example, fertilizers) and 
high levels of pollution (for example, nutrient losses, greenhouse gas 

(GHG) emissions)3,12. The diminishing share of soy production in 
the agrifood landscape has also been a topic of debate concerning 
national (food) security13, in addition to issues pertaining to land 
use, biodiversity loss and implications for soil health3. Globally, 
China’s increasing soy purchases have corresponded with hikes in 
the price of soy on the international market14 (Supplementary Fig. 1).  
China could also be responsible for indirectly accelerating defores-
tation and GHG emissions in the Brazilian Amazon and Cerrado, 
where land has been cleared for expanded soy production2,6,7. Given 
the magnitude of the problem and its wide-ranging consequences—
and anticipating even greater demands in the decades to come—we 
asked how China can optimize its resource allocation and enhance 
maize and soy production capacity so as to reduce its reliance on soy 
importation and advance both feed and food security sustainably.

In this study, we show that optimizing China’s maize and soy 
production can help to address the issues raised above. Our con-
ceptual framework is rooted in an analysis of both the current state 
and the potential of China’s production systems: (i) Maize acreage is 
large (more than 30% of total cultivated land and the highest among 
all cereal grain crops in the country) but yield is low (roughly 50% 
of the yield potential)15, indicating that there is a lot of room for 
improvement. (ii) Maize yield can increase substantially by imple-
menting advanced management technologies that are already avail-
able15–18. Doing so would spare some maize acreage for soy while 
reducing pollution. (iii) Maize and soy have similar growth condi-
tions—for example, planting regions and growing days—thus mak-
ing the optimization strategies feasible. Through systems-based 
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comprehensive analyses that combine field data with model simula-
tion, together with a meta-analysis of the literature, we show that 
China would be able to produce 45% of the soy needed by 2035 
while maintaining total maize self-sufficiency on the same acreage 
of our reference year (2017) for the two crops. Furthermore, imple-
menting enhanced management practices proposed in the optimi-
zation strategies will have substantial co-benefits such as improving 
fertilizer efficiency, reducing reactive nitrogen losses and lowering 
GHG emissions.

Results
Yield benchmarks and attainable production capacity. Our 
first step was to quantify yield potential under irrigated (Yp) and 
rain-fed conditions (Yw) for maize and soy, which is a prerequisite 
for assessing maximal production capacity on existing cropland19. 
In China, maize and soy are grown in more than 1,800 counties 
that range from warm subtropics at 18° N to cool temperate cli-
mates at 53° N, with agroecosystems spanning arid to semi-arid 
to humid conditions. For each of those counties, we determined Yp 
and Yw using county-specific optimal agronomic parameters (for 
example, planting date, density and varieties; Supplementary Fig. 2  
and Methods) as inputs to the Hybrid-Maize and SoySim models. 
To account for year-to-year variation, we used weather data for 
a 10-year period (2005–2014). The Yp aggregated from all 1,839 
counties averaged 15.6 Mg ha−1 for irrigated maize (range: 8.7–
19.1 Mg ha−1, median: 14.9 Mg ha−1) and 4.3 Mg ha−1 for irrigated 
soy (range: 3.3–5.6 Mg ha−1, median: 4.3 Mg ha−1). In comparison, 
the Yw was 11.7 Mg ha−1 for rain-fed maize (range: 5.0–16.6 Mg ha−1, 
median: 11.6 Mg ha−1) and 4.1 Mg ha−1 for rain-fed soy (range: 
2.8–5.3 Mg ha−1, median: 4.2 Mg ha−1). Our simulated Yp for maize 
is 9–10% greater than previous estimates15,20; the latter were based 
on less than optimum values for conditions such as planting date, 
density and varieties.

Closing the yield gap is key for pursuing sustainable food secu-
rity21,22. To accurately assess county-level yield gaps for maize and 
soy, we first calculated the area-weighted yield potential (Ypot) from 
Yp (irrigated) and Yw (rain-fed) at the county level, because our 
actual yield data do not distinguish irrigated from rain-fed produc-
tion modes. Subsequently, county-level yield gap was computed 
as the difference between Ypot and actual yield, the latter being the 
mean of farmers’ yields recorded in Chinese yearbooks during 
2005–2014. Together, the county-level yield gap varied from 1.35–
10.93 Mg ha−1 for maize (5th–95th) and 0.84–3.56 Mg ha−1 for soy 
(Fig. 1c,d). Aggregated to the national level, the Ypot is 13.1 Mg ha−1 
for maize and 4.2 Mg ha−1 for soy (Fig. 1a,b); farmers’ yields aver-
age 6.4 Mg ha−1 and 2.0 Mg ha−1, respectively . Therefore, the 
national-level yield gap is 51% for maize and 52% for soy (Fig. 1c,d), 
suggesting that there is large room for improvement. For compari-
son, the yield gap was estimated at around 21% for maize in the 
USA20 and around 36% for soy in Brazil23.

Determining the attainable yield (Yatt) is critical in our analysis 
for optimizing China’s maize and soy production. In previous stud-
ies, the attainable yield was assigned as 80% of the yield potential21,22. 
We examined the county-level yields that were actually achieved by 
high-producing farmers on the basis of a large-scale survey. The 
survey consisted of 4.85 million farmers in 1,243 counties, cover-
ing 78% of the total acreage of maize and soy production in China 
(Methods). For each county, we identified the top 10% producers 
and used the mean of their yields as Yatt (ref. 22). County-by-county 
Yatt varied from 6.1 to 14.6 Mg ha−1 for maize (n = 997, mean: 
9.1 Mg ha−1, median: 9.7 Mg ha−1.) and 1.9 to 4.0 Mg ha−1 for soy 
(n = 246, mean: 2.9 Mg ha−1, median: 2.9 Mg ha−1). The Yatt across all 
counties would be 40–98% of Ypot for maize (mean: 68%, median: 
65%) and 39–94% for soy (mean: 67%, median: 68%). Aggregated 
at the national level, Yatt would be 72% of Ypot for maize and 71% 
for soy. We consider benchmarking county-specific Yatt on the basis 

of the mean actual yield of top 10% producers in each county to 
be a sound choice. It better reflects local socioeconomic and agro-
nomic conditions, in contrast with the arbitrary assignment (80% of 
yield potential) that was used previously21,22. The Yatt values obtained 
in our analysis are probably conservative considering the highest 
records from field experiments in China (86–91% of Ypot for maize; 
Supplementary Discussion)16, but are realistic and feasible as the 
yields have been achieved by top producers in the counties.

Our next step was to map out acreage reallocation schemes for 
producing the maize and soy needed by 2035, projected to be 289 
and 133 Mt, respectively (Methods). We assumed the same acre-
age as the reference year 2017 (50.6 Mha for the two crops11) and 
used the county-by-county Yatt as the production benchmark. We 
prioritized maize production by allocating enough acreage to pro-
duce the needed 289 Mt; the remaining acreage would then be used 
for soy. Without changing each county’s total acreage for maize and 
soy, acreage reallocation followed three principles: (i) Cropping 
diversity. For each agroecological zone (see map in Supplementary 
Fig. 4a), we ranked all counties on the basis of their maize acre-
age as a percentage of total arable land in the county, then used the 
point of the 25th percentile as the cut-off for the maximal maize 
allowance. Counties with a maize acreage percentage greater than 
the cut-off point would have their ‘excess’ acreage reallocated to 
soy. For example, ranking in the northeast zone showed the 25th 
percentile to be 77%. Therefore, counties with a maize acreage 
greater than 77% of their total arable land would reduce their maize 
acreage to the cut-off and reallocate the remaining acreage to soy.  
(ii) Water availability. For counties with a persistent water deficit 
(see map in Supplementary Fig. 4b), a quarter of the current maize 
acreage would be reallocated to soy. This is because soy production 
consumes less water than maize production does on a per hectare 
basis (see Supplementary Discussion). (iii) Productivity constraints. 
Counties with a low Yatt (an indication of agro-biophysical and 
technological constraints) would convert 75% of the reference-year 
maize acreage to soy; this process started with counties with the 
lowest Yatt and moved up the ranking list until cumulative maize 
production output met the needed 289 Mt (see Methods).

The optimized maize and soy production scheme (Fig. 2) would 
have 30.7 Mha for maize (289 Mt) and the remaining 20.0 Mha for 
soy. This would mean a reallocation of 11.7 Mha from maize to 
soy compared to the reference year 2017. Production output for 
soy would total 60 Mt. China would be able to meet 100% of its 
needs for maize and 45% for soy by 2035. The required import of 
soy would be 73 Mt. In other words, under the optimized scheme, 
China would reduce its soy import reliance to 55%, compared with 
90% in the reference year 2017. The relevant effects of this on inter-
national trade, in particular with regard to the two largest soy trade 
partners with China (Brazil and the USA), are presented in the 
Supplementary Discussion.

With the optimized scheme, yields at the national level for 2035 
would average 9.4 Mg ha−1 for maize and 3.0 Mg ha−1 for soy (70% 
of the Ypot for maize and 71% for soy). These would still be lower 
than the average yields achieved in the USA (11.9 and 3.3 Mg ha−1 
in 2017) (FAO), and substantially lower than high-yield records in 
China (higher than 15 Mg ha−1 for maize)16.

Nitrogen and carbon footprints and other effects. Advancing 
China’s feed security with greater self-sufficiency must also address 
environmental and climate issues. We compared enhanced and con-
ventional management scenarios to quantitatively assess a number 
of resource and environmental indices, including fertilizer uses, 
reactive nitrogen losses, GHG emissions and farmer cost–benefit 
analyses. The enhanced management scenario assumes the imple-
mentation of integrated soil-crop system management (ISSM), 
which is a comprehensive decision-support programme designed 
to provide agronomic and soil–water–nutrient management  
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recommendations and has been widely tested in China16–18; the 
conventional scenario refers to the prevailing practices of farm-
ers. First, we derived data on fertilizer and nutrient use efficiency 
for enhanced versus conventional scenarios from field trials of 
more than 8,000 site-years conducted during 2005–2014 through 
national collaboration networks18 (Methods). Each trial featured 
side-by-side comparison of local farmers’ practices (conventional) 
versus ISSM-based recommendations (the enhanced management 
scenario). Compared to local farmers’ practices, the adoption of 
ISSM-based recommendations led to an increase in yield from 7.8 
to 9.5 Mg ha−1 (12–40% for 6,089 site-years) for maize, and from 
2.2 to 2.6 Mg ha−1 (6–40% for 2,072 site-years) for soy. Note that 
the yields obtained through ISSM are similar to the target yields 
(that is, Yatt) for assessing maize and soy production capacity by 
2035 (9.4 and 3.0 Mg ha−1 for maize and soybean, respectively). 
Nitrogen use efficiencies (crop yields per unit of applied nitrogen 
fertilizer) increased from 40 to 51 kg kg−1 N for maize and from 
51 to 62 kg kg−1 N for soy. Phosphorus use efficiencies went up 
as well, from 105 to 109 kg kg−1 P2O5 for maize and from 46 to 
51 kg kg−1 P2O5 for soy. Under ISSM, potassium application rates 
increased, as recommended based on soil-test results, from 26 to 
73 kg K2O ha−1 for maize and from 15 to 20 kg K2O ha−1 for soy 
(Supplementary Table 2).

From the large dataset established via those field trials, we calcu-
lated county-by-county fertilizer usage for the projected production 
of maize and soy by 2035 and their nutrient use efficiencies under 
enhanced (implementing ISSM-based recommendations) versus 
conventional scenarios. Aggregating county-by-county data to the 
national level, it would require 11.7 Mt N, 5.3 Mt P2O5 and 2.1 Mt 
K2O for maize and soy production under the conventional scenario, 
but 6.7 Mt N, 3.8 Mt P2O5 and 2.9 Mt K2O under the enhanced man-
agement scenario. In other words, adoption of ISSM could decrease 
total fertilizer use by 42% for N and 28% for P2O5, while increasing 
K2O by 38% (Fig. 3a).

To assess reactive nitrogen losses under the enhanced versus the 
conventional scenarios, we created a random forest regression model 
that uses machine learning techniques to simulate reactive nitrogen 
loss through N2O emissions, NH3 volatilization and NO3

− leaching 
(Supplementary Fig. 5). The model computes in situ reactive nitro-
gen losses by integrating eight parameters that are county specific, 
including precipitation, potential evapotranspiration, temperature 
and wind speed; soil texture, pH and organic matter; and nitro-
gen balance (see Methods). Loss factors are calculated as reactive 
nitrogen loss divided by the nitrogen applied. Our results indicated 
that loss factors would decrease from 23.4% under the conventional  
scenario to 21.9% under the enhanced scenario (Supplementary 
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Table 3 and Supplementary Discussion). Per hectare reactive nitro-
gen loss would be fertilizer application rate multiplied by the loss 
factor. Aggregated to the national level, reactive nitrogen loss would 
be 37.9 kg ha−1 (ranging from 24.3 to 56.1 kg ha−1 for 1,735 coun-
ties) for maize and 9.2 kg ha−1 (ranging from 5.1 to 17.6 kg ha−1 for 
1,763 counties) for soy production under the enhanced manage-
ment scenario, compared to 71.3 kg ha−1 (maize) and 13.6 kg ha−1 
(soy) under the conventional scenario. The total reactive nitrogen 
loss would be 45% lower under the enhanced management scenario 
(1.3 Mt) compared to the conventional scenario (2.5 Mt) (Fig. 3b 
and Supplementary Fig. 6).

We also performed a life-cycle analysis to compute the car-
bon footprints (as carbon dioxide equivalent; CO2-eq) for the two 
management scenarios, accounting for three contributing factors: 
field N2O emissions; GHG emissions associated with the produc-
tion and usage of fertilizers; and GHG emissions related to crop 
production operations (see Methods). All calculations were made 
county-by-county, and the results were expressed in CO2-eq ha−1. 
Aggregated to the national level, carbon footprints would be 3,074 
and 1,192 CO2-eq ha−1 for maize and soy under the enhanced man-
agement scenario, compared to 5,175 and 1,551 CO2-eq ha−1 under 
the conventional scenario. Total carbon footprints for producing 
maize and soy projected for 2035 would be 38% lower under the 
enhanced scenario (118 Mt CO2-eq), compared to the conventional 
scenario (190 Mt CO2-eq) (Fig. 3c).

Our cost–benefit analysis (Methods) indicated that farmers who 
implemented the enhanced management scenario would reduce 
cost by US$52 ha−1 compared to the conventional scenario (Fig. 3d 
and Supplementary Table 4). This would add up to US$2.7 billion 
nationwide (2035 projection). It is also interesting to note that by 
optimizing China’s maize and soy production, total fertilizer use 
for 2035 would be similar to the amounts consumed in the refer-
ence year 2017 (more phosphorus and potassium but less nitrogen), 
whereas the total reactive nitrogen loss would decrease by 27% and 
GHG emissions by 19% from the reference levels (Supplementary 
Table 3). In addition, there can be a number of tangible benefits 
besides the reductions in resource and environmental-climate bur-
dens described above. For example, residual soil nitrogen from 
the soy crop residues can lower fertilizer nitrogen needs for the 

subsequent maize crop in a maize–soy rotation, thereby reduc-
ing nitrogen-induced pollution and GHG emissions22. Also, an 
improved maize–soy rotation or intercropping could help increase 
soil organic carbon, improve soil water retention and promote soil 
health by inhibiting pathogens and soil-borne diseases24,25.

Discussion
The findings we present in this study will be valuable for inform-
ing policies and guiding decision-making processes going forward. 
Operationally, there may be both barriers and opportunities; a few 
examples are briefly discussed here. First and foremost, address-
ing the bottom line for farmers—that is, the economic return—is 
fundamental. The current market situation would make the con-
version of maize acreage to soy an unattractive option (net benefits 
averaging US$1,485 ha−1 for maize versus US$1,086 ha−1 for soy; 
Supplementary Table 5). The provision of financial incentives could 
have a key role in motivating smallholder farmers towards more 
soy production. In 2017 and 2018, Chinese soy producers were 
provided US$384 ha−1 in subsidy from the central government; a 
hefty US$706 ha−1 was provided in Heilongjiang province, where 
growth conditions particularly favour soy production26. Such incen-
tive programmes would help promote a transition towards more soy 
planting. In fact, China’s soy acreage increased from 6.8 to 8.2 Mha 
during 2015–201711. For the three provinces where the highest 
increases in soy acreage are projected in our simulation for 2035 
(Heilongjiang, Inner Mongolia and Jilin), there is a trend with soy 
acreage increasing 0.64 Mha per year during 2015–2017; continuing 
this trend would bring their combined soy acreage to 13.3 Mha by 
2035, exceeding our projected 11.0 Mha (Fig. 2).

That farming in China is performed by millions of small-
holders who are resource poor and knowledge limited could be 
a major challenge for broadly implementing enhanced manage-
ment technologies27. But recent success in engaging and empow-
ering smallholders with markedly improved production and 
environmental performance is encouraging18,28. Still, transferring 
enhanced management technologies into the hands of millions of 
smallholders will require institutional, infrastructural and capital 
commitments28. Furthermore, steady and forward-looking policies 
on land tenure and land stewardship that emphasize long-term soil 
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health and productivity are essential. In Heilongjiang and Xinjiang, 
for example, large-scale farms have shown an increased yield 
growth for maize and soy production, compared to smallholders 
(Supplementary Fig. 8).

More broadly, large volumes of food-processing residues 
and waste are generated routinely1; China is not an exception29. 
Leveraging livestock to upcycle those biomass materials for meat, 
milk and egg production is a viable option, as animals are natural 
bioprocessors capable of digesting the biomass and capturing some 
of the nutrients (calories, proteins, minerals and so on) that are con-
tained in the otherwise wasted materials. Such livestock-enabled 
upcycling would, in turn, reduce the needs for maize and soy as 
feed grains30. In addition, policies and actions aimed at changing 
consumer food-wasting behaviours, as well as promoting healthy 
eating, are important29.

The comprehensive analyses presented above are subject to 
limitations. First, with counties being the base unit, intra-county 
variations in soil and other conditions are not considered because 
of data gaps at the sub-county level. Second, although we included 
10-year weather variability (2005–2014) in our analysis, the poten-
tial impact of climate change on crop production for the coming 
decade is not factored in. Previous studies have reported yield 
increases in some places but decreases in others according to cli-
mate variability31. Given the broad range of biophysical and climatic 
conditions across China, we assume that the yield-boosting and 
yield-inhibiting effects of climate change might cancel each other 

out to a certain extent and thus the net effects may be small. Third, 
our analyses use existing data generated in the recent past; for 
example, the attainable yield was set as the actual yield achieved by 
top-producing farmers. Meanwhile, continued agricultural innova-
tions such as new and improved seeds (including genetically modi-
fied seeds) or more advanced management technologies are likely 
to further boost yield10. These potential improvements may com-
pensate for the negative effects of climate change but were not taken 
into account in our analysis.

Our study goes beyond previous work on quantitatively defining 
the yield gap to assess the production improvement capacity for a 
given crop, as we optimize maize and soy production for improved 
productivity and environmental outcomes. The refined county-level 
resolution at which our comprehensive analyses are performed and 
the subsequent results reflect diverse production conditions across 
the country. China can address its maize and soy needs more sus-
tainably and productively while lowering resource–environment–
climate burdens domestically and elsewhere. To attain these goals, 
China needs to design innovative and effective policies, establish 
implementation strategies with measurable milestone targets and 
take concrete and decisive actions. Our conceptual framework is 
transferable to other regions or countries.

Methods
Maize and soy yield potential. The Hybrid-Maize (2017) and SoySim (1.0) models 
were used to simulate the yield potential of maize and soy. A detailed description 
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of model structure and parameterization has been published previously32–34. These 
models are process-based and have been used to simulate crop development, dry 
matter production and yield potential in the USA and China15,16. We have tested 
the models in previous studies16,35 under irrigated as well as rain-fed conditions. 
We ran the models using county-level weather data from 2005–2014 for numerous 
combinations of varieties, sowing dates and plant densities. A combination of 
maize growing degree days and soy maturity group, sowing date and plant densities 
that maximized yield potential over the 10 seasons was selected as the optimal 
management inputs (Supplementary Fig. 2 and Supplementary Discussion). We 
simulated Yp and Yw for each county using optimal management, respectively. 
An area-weighted yield potential, Ypot, was obtained per county based on the 
ratio of irrigated and rain-fed areas and relevant Yp and Yw values (equation (1)). 
Irrigated and rain-fed land was identified in each county using SPAM 2005 (http://
mapspam.info; Supplementary Fig. 3a,b).

Model simulation of annual Yp and Yw requires daily weather records and basic 
soil information. Daily weather records from 2005–2014 were obtained for a total 
of 1,839 counties (Supplementary Fig. 7). The daily maximum and minimum 
temperatures, relative humidity, precipitation and reference evapotranspiration 
data were obtained from interpolated weather data with a spatial resolution 
of 0.25° × 0.25° and designed for high-resolution climate modelling 
(CN05.1_A_1961_2015_B_025x025.ctl) from 2,416 station observations. Solar 
radiation data were obtained from the gridded China Meteorological Forcing 
Dataset (CFMD), developed by the Institute of Tibetan Plateau Research, Chinese 
Academy of Sciences36,37. The gridded meteorological data were subsequently 
resampled for each county through bilinear interpolation. This process resulted in 
the creation of one weather dataset per county per day.

Soil properties as model inputs were obtained from the Harmonized 
World Soil Database, v.1.1 (http://www.fao.org/soils-portal/soil-survey/
soil-maps-and-databases/harmonized-world-soil-database-v12/en/). Soil-type data 
were obtained from the Resource and Environment Data Cloud Platform  
(http://www.resdc.cn/data.aspx?DATAID=202).

Area-weighted yield potential yield for each county was determined using the 
following equation:

Ypot =
Yp × SAi + Yw × SAr

SA (1)

where Ypot stands for area-weighted yield potential, Yp for irrigation yield potential, 
Yw for rain-fed yield potential, SAi for irrigated area in hectare, SAr for rain-fed area 
in hectare and SA for both production modes (that is, SAi plus SAr). SAi and SAr are 
determined by multiplying the total planted area for the crop per county (data from 
China Municipal Statistical Yearbook) by the irrigated versus the rain-fed ratio 
(obtained using SPAM 2005).

Current farmers’ yields and yield gaps. Data on maize and soy yields and hectares 
cultivated during 2005–2014 were extracted from the China Municipal Statistical 
Yearbook that included records from 1,735 counties for maize and 1,589 counties 
for soy in China. The average current yield was calculated as the average yield over 
the 10-year (2005–2014) time period to represent current farmers’ yield. The yield 
gap was the difference between the farmers’ yield and area-weighted Ypot.

Estimation of Yatt. The Yatt was set at the per-country average yield achieved by the 
top 10% producers based on a large-scale survey. The survey was conducted during 
2005–2014 in 997 counties for maize and 246 counties for soy identified from the 
yield database as described above, involving 4.58 million maize growers and 0.27 
million soy producers. These producers were interviewed face-to-face by county 
extension agents using a questionnaire designed to obtain information on yield, 
crop varieties and fertilizer use (see a previous report18 for more detailed survey 
description). We calculated the average Yatt in each province to be used as the 
attainable yield for counties without survey data (Supplementary Table 1).

Projection for 2035. China’s future demands for maize and soy were projected 
for the year 2035. The demands were assumed to be primarily for animal feeds, 
which were projected based on human consumption of animal products. The 
human population was projected to increase from 1.407 billion in 2015 to 1.461 
billion by 2035 with 70% urban and 30% rural distributions differing in dietary 
characteristics5,38. The projected animal-source food consumption by 2035 is 14 kg 
of animal protein per capita per year, reflecting a 30% increase from that consumed 
in 2015 in China (11 kg of protein per capita per year), but still lower than that of 
the USA and Europe. We used the nutrient flows in food chains, environment and 
resource (NUFERNUFER) model38 to calculate annual nitrogen and phosphorus 
inputs and outputs in crop and animal production and food processing, retail 
and consumption at the regional scale, and to project the feed grain demands for 
2035, resulting in 289 Mt for maize and 133 Mt for soy (10% and 22% higher than 
the reference year of 2017). Much of these increases are associated with a rapid 
increase in monogastric animals and intensive livestock systems, which require soy 
as the source of high-quality protein for the animals9.

Optimal acreage reallocation. For attainable production capacity, increases in 
the maize and soy yields were assumed to reach the Yatt in each county. When 

maize demand was fully met, the remaining acreage would be allocated to soy 
(the combined maize and soy acreage in each county would remain the same as in 
2017). The optimization process consisted of three steps. First, for each of the four 
regions (northeast, northwest, north central, and south China; Supplementary Fig. 
4a), we ranked the counties based on their ratio of maize acreage as a percentage 
of arable land. We then identified the top 25th percentile and used that as the 
cut-off point for maximal maize allowance, which turned out to be 77%, 43%, 75% 
and 28% for the four regions, respectively. The ‘excess’ acreage for a given county 
(that is, above the cut-off) would be allocated to soy. Through this step, 3.33 Mha 
of maize acreage was reallocated to soy. Second, the reference-year maize acreage 
was reduced by 25% in the water deficit regions, which consist of 186 counties 
(Supplementary Fig. 4b), based on current policy because of the fragile ecological 
environment. This led to the reallocation of 0.99 Mha from maize to soy. Finally, all 
counties were ranked based on Yatt. Starting from the the lowest Yatt, counties would 
be taken one-by-one with 75% of reference-year maize acreage reallocated to soy, 
until national cumulative maize production reached 289 Mt. In the end, a total of 
30.7 Mha would be used to produce 289 Mt maize, and 20.0 Mha for producing 60 
Mt soy (Fig. 2).

Estimation of fertilizer use. County-level nitrogen, phosphorus and potassium 
fertilizer rates were calculated by dividing the crop yield by the fertilizer use 
efficiency (kg grain kg−1 nutrient). The latter, including nitrogen, phosphorus and 
potassium fertilizer efficiencies for enhanced versus conventional management 
scenarios, were estimated using the results from large-scale on-farm experiments 
(Supplementary Table 2). In total, 6,089 (maize) and 2,073 (soy) site-years of field 
trials were conducted to increase grain yield and optimize fertilizer inputs using 
integrated management, with sites spread across 654 counties for maize and 141 
counties for soy from 2005 to 2015. Each field trial included farmers’ practices and 
ISSM-based recommendations. Results for maize have been reported18. For soy, the 
results, not reported previously, are used in the current study.

Estimation of reactive nitrogen loss. The Web of Science and China National 
Knowledge Infrastructure databases were searched to identify articles published 
between January 1995 and August 2018 for N2O, NH3 or NO3

− loss during 
maize and soy production. The screen criteria were: (i) measurement of 
reactive nitrogen losses in fields throughout the growing season; (ii) inclusion 
of a control with zero nitrogen input in the measurement of reactive nitrogen 
loss; (iii) nitrogen application in the form of urea or ammonium, excluding 
slow-release or controlled-release fertilizers or organic materials, such as 
manure and compost; and (iv) determination of N2O emissions using closed 
static chambers, NH3 emissions using continuous air flow chambers, venting, 
a Drager-Tube or a microclimate with wind tunnels, and NO3

− leaching using 
a suction cup and lysimeters, soil analysis or hydrological modelling. In total, 
139 peer-reviewed studies contributing 634 observations (282 from 89 studies 
on N2O, 246 from 49 studies on NH3 and 106 from 18 studies on NO3

−; see 
Supplementary Discussion) were identified. The loss factor for N2O, NO3

− and 
NH3 was calculated from net losses obtained from these studies, and expressed as 
a percentage of nitrogen applied.

The loss factors during maize and soy production were determined at the 
county level. A random forest regression model39 was developed using the 
parameter measurements synthesized from the 139 studies mentioned above. 
The model used ensemble machine learning techniques and presented a set of 
binary decision rules based on input variables. Data were processed in three steps. 
First, the model randomly selected a bootstrap sample of observations (‘in-bag’ 
data), which were the equivalent of the entire set of observations, along with 
replacements. About 37% of the initial observations were unselected, referred to 
as ‘out-of-bag’ (OOB) data40. The model selected a regression tree for each sample 
and randomly selected explanatory variables with mtry features (mtry: number of 
variables randomly sampled as candidates at each split. Note that the default values 
are different for classification (sqrt(p) where p is number of variables in x) and 
regression (p/3))39. A regression tree was built based on the in-bag data and mtry 
variables selected. All splits of the tree were examined with predictor variables, and 
the best split at each step was determined to classify and build the regression tree. 
The regression and MSEOOB were developed as follows:

MSEOOB =
1
n

n∑

i=1
(yi − ŷOOB)2 (2)

where MSEOOB is the mean square error of the prediction, yi is observation i and 
ŷOOB is the predicted value of OOB. The OOB observation i in the regression tree 
denotes the mean reactive nitrogen loss for the in-bag observations at the same 
terminal node.

Nitrogen loss factors served as the dependent variable in the random forest 
regression model (Supplementary Fig. 5). Major factors affecting reactive nitrogen 
losses were climate (precipitation, potential evapotranspiration, mean temperature 
and mean wind speed), soil (sand content, pH and organic matter) and nitrogen 
balance (nitrogen applied minus above-ground nitrogen uptake), as determined 
using random forest modelling with 10-fold cross validation. The dataset was 
evaluated by dividing it into ten subsets of equal size; seven subsets were used 
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for modelling and three were used for testing with the random forest model. The 
predictions were used to calculate the root mean square error of reactive nitrogen 
losses. Input variables for the regression tree were ranked according to their 
contributions to the mean square error.

Annual loss of nitrogen was computed for the counties in which production 
remained at the current level (2017), conventional (2035) and enhanced 
management scenarios (2035). The projection was conducted by random forest 
modelling. The climate and soil characteristics parameters were entered into the 
model to obtain the best-fitting simulation based on the regression coefficient 
of determination and variation. The amounts of N2O, NH3 and NO3

– losses were 
calculated by multiplying loss factors by the rate of nitrogen application (kg N ha−1) 
for each county.

Estimation of GHG emissions. Total GHG emissions from the 2017 level and in 
conventional and enhanced management scenarios for 2035 were calculated using 
a life-cycle analysis approach41. The occurrence of emissions included: (1) nitrogen 
fertilizer application, directly and indirectly from N2O release, calculated through 
a meta-analysis using the random forest model (as above); (2) fertilizer (nitrogen, 
phosphorus and potassium) production; (3) use of electricity for irrigation 
and other factors, including the use of pesticides and diesel fuel for tilling and 
harvesting. The following calculations were made:

Total GHG = 298 × (N2Oindirect + N2Odirect) × 44/28

+Ninput × EFN + Pinput × EFP + Kinput × EFK + 9.2

×Irr × EFirr + Pestinput × EFPest. + Fuelinput × EFFuel,

(3)

where N2Odirect and N2Oindirect are the N2O (kg ha−1) emitted directly (from the 
soil during nitrogen application) and indirectly through volatilization of NH3, 
respectively, accounting for soil redeposition and NO3

− leaching42; 298 is the CO2 
equivalent of N2O in terms of global warming; and 44/28 is the conversion rate of 
N to N2O. Ninput, Pinput and Kinput are the rates of N, P2O5 and K2O application (kg 
ha−1), respectively; EFN, EFP and EFK are GHG emissions in CO2-eq per kilogram of 
N, P2O5 and K2O fertilizer production, respectively; 9.2 is electricity consumption 
by irrigation; Irr is irrigation amount (mm); EFirr is the GHG emissions from the 
consumption of electricity; Pest input and Fuelinput are pesticide and diesel fuel inputs 
(in kg), respectively; and EFPest and EFFuel are GHG emissions from pesticide and 
diesel fuel use, respectively.

Irrigation is an important factor for calculating GHG emissions and cost–
benefit analysis (discussed later). We estimated irrigation water use by dividing 
the crop yield by the rate of irrigation water productivity (IWP). A meta-analysis 
was performed to quantify the effects of the enhanced management strategies 
on IWP (Supplementary Discussion). A review of peer-reviewed scientific 
journal articles on IWP for conventional and enhanced management practices 
published after January 2000 was conducted based on the following screening 
criteria: (i) all data were from field experiments; (ii) data on yield and irrigation 
volumes were provided; and (iii) traditional management (local water volume 
with furrow or flooding irrigation) and at least one optimal management strategy 
was applied. Optimal water management strategies included optimized irrigation 
volume or improved technologies, such as drip or sprinkler irrigation. A total 
of 83 peer-reviewed studies describing 287 paired observations of optimal and 
traditional water management was identified.

Cost–benefit analysis. A cost–benefit analysis was performed based on input 
costs and crop sales. The benefit was the gross sales of crop products (US$ ha−1), 
and the net benefit was the benefit minus the input costs. Input costs included 
purchases of nitrogen, phosphorus and potassium fertilizer, irrigation (drip and 
sprinkling) equipment and other operational needs (pesticides, seeds, machinery 
and labour). The prices of nitrogen, phosphorus and potassium fertilizer, irrigation 
and other costs were obtained from the National Agricultural Products Cost–
Benefit Compilation of Information (2018) and the National Agricultural Products 
Wholesale Market Price Information System (pfsc.agri.cn) (Supplementary Table 5).  
Seed expenditures would increase according to (i) farmers’ shifts from older 
varieties to newer varieties (based on https://www.cnhnb.com/); and (ii) increased 
seed for high planting density. The increase in machinery cost was calculated 
based on the increased use of fuel (diesel) for fertilization and water for irrigation, 
seeding and harvesting. The cost of irrigation equipment43 in the enhanced scenario 
included all expenses related to drip irrigation and sprinkling irrigation equipment, 
which were annualized assuming a lifespan of 5 years and a discount rate of 10%.

Data management. The databases were developed and maintained using 
Microsoft Excel 2013. Weather records were analysed using MATLAB R2017a. 
Data obtained from national surveys were stored and analysed using the SQL 
Server 2008. Graphics were drawn using SigmaPlot v.12.5 and Microsoft Excel 
2013. A publicly released map of China was obtained from the Resource and 
Environmental Data Cloud Platform (http://www.resdc.cn), and all map-related 
operations were performed using ArcGIS 10.2 software (www.esri.com/en-us/
arcgis). Computations and predictions were performed using the Random Forest 
Environmental Model, R 3.5.1.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The data supporting the findings of this study are available within the paper and 
its Supplementary Information and Supplementary Data files. Source data are 
provided with this paper.

Code availability
The custom code generated for this study is available in the Supplementary  
Data file.
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Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Hybrid-Maize model 2017 and SoySim model 1.0 were used to simulated the yield potential of maize and soy respectively.

Data analysis Weather records were analyzed using MATLAB R2017a. Data obtained from national surveys were stored and analyzed using SQL Server 2008. 
Computations and predictions were performed using Random Forest Environment Model, R 3.5.1. 

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

The data presented in our study as Figures and Tables (including Extended Data Figures and Tables) are all available in the Text and Supporting Information or 
otherwise can be obtained from corresponding authors.
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Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description This work is an integrated study which contains: (i) crop models, Hybrid-Maize (2017) and SoySim (1.0), for accurately predicting yield 
potential; (ii) large scale statistical data summary (county-level yield and sowing area of maize, and soy ); (iii) large farm survey data 
summary (the yield and fertilizer N application of top 10% and average producers of each county);(iv) the NUFERNUFER model for 
predicting maize and soy demands by 2035;(v)a random forest (RF) regression model for estimating Nr losses, and to assess Nr 
losses, GHG emission and Cost-benefit of conventional and optimized scenarios in 2035;(iv) the impact of reduction of China's soy 
importation on global trade and economy by GTAP model.

Research sample For the yield potential and improvement, the county-level yield potential of maize and soy was simulated using Hybrid-Maize and 
SoySim respectively and current yield were extracted from China Municipal Statistical Yearbook. For the impact on N losses and 
greenhouse gas emissions, we conducted a literature search using Web of Science and the China National Knowledge Infrastructure 
(CNKI) for relevant articles published between January 1995 and August 2018.  Selection criteria were as follows: (i) Nr losses must 
have been measured during field operations and throughout the entire growing season; (ii) Nr losses must have contained at least 
two N input levels, including a zero-N control; and (iii) N application was in the form of urea and ammonium. For outlook of yield 
improvement, the yield and fertilizer N application of top 10% and average producers of each county obtained from a face-to-face 
survey by county extension agents.

Sampling strategy For the yield potential and improvement, we estimated the yield potential and current yield in 1,735 counties for maize and 1,589 
counties for soy from 2005 to 2014, together accounting for 97% of the total hectares for these crops in China. We aggregated the 
141 GTAP regions into 19 region-blocks based on their proportions in the soy market. The 5 primary factors were also aggregated 
into 3 factors (including land, capital and labor).For the impact on N losses and greenhouse gas emissions, we collected data from 
158 peer-reviewed studies, include 612 observations (90 studies with 274 observations for N2O emission, 50 studies with 234 
observations for NH3 volatilization, and 18 studies with 104 observations for NO3− leaching). For outlook of yield improvement, we 
summarized a survey 2005-2014 in 997 counties for maize and 246 counties for soybeans, involving 4.58 million producers for maize 
and 0.27 million producers for soy.

Data collection We used Hybrid-Maize and SoySim model to estimate the yield potential of maize and soy based on optimized managements in 
planting date, plant density, and maturity condition. We obtained county-level current yield from China Municipal Statistical 
Yearbook. For the impact on N losses and greenhouse gas emissions, we conducted a literature search using Web of Science and the 
China National Knowledge Infrastructure (CNKI) for relevant articles published between January 1995 and August 2018. We 
calculated the yield and fertilizer N application of top 10% and average producers of each county obtained from a face-to-face survey 
by county extension agents.

Timing and spatial scale All the statistical data were summarized from 1961  to 2017; and model simulation data were simulated from 2005 to 2014; Nr loss 
data of maize and soybean production from publications between January 1995 and August 2018.

Data exclusions None.

Reproducibility Our study is an integrated study mainly based on model simulation ,statistical data and reference data. Our results can be 
reproduced when following the described methods and data.

Randomization This is not relevant to our study because our work is not an "Experimental" study but an integrated data analysis. We used national 
statistical data and published data to do the integrated analysis.

Blinding Blinding is not possible in our study. Because we have no choice to collect the national statistical data or reference data (just 
according to key words) considering the blinding principle.

Did the study involve field work? Yes No

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data
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