科研成果 by Year: 2021

2021
Hu SY HM*. Current challenges of improving visibility due to increasing nitrate fraction in PM2.5 during the haze days in Beijing, China. ENVIRONMENTAL POLLUTION [Internet]. 2021;290. 访问链接
Zhang ZR HM*. Formation and evolution of secondary organic aerosols derived from urban-lifestyle sources: vehicle exhaust and cooking emissions. ATMOSPHERIC CHEMISTRY AND PHYSICS [Internet]. 2021;21(19):15221-15237. 访问链接
Li X HM*. Links between the optical properties and chemical compositions of brown carbon chromophores in different environments: Contributions and formation of functionalized aromatic compounds. SCIENCE OF THE TOTAL ENVIRONMENT [Internet]. 2021;786. 访问链接
Xiao Y, Hu M*. Insights into aqueous-phase and photochemical formation of secondary organic aerosol in the winter of Beijing. ATMOSPHERIC ENVIRONMENT [Internet]. 2021;259. 访问链接
Zhao G, Hu M*. Impact of aerosol-radiation interaction on new particle formation. ATMOSPHERIC CHEMISTRY AND PHYSICS [Internet]. 2021;21(13):9995-10004. 访问链接
Zhao G, Hu M*, Fang X, Tan TY, Xiao Y, Du ZF, Zheng J, Shang DJ, Wu ZJ, Guo S, et al. Larger than expected variation range in the real part of the refractive index for ambient aerosols in China. Science of the Total Environment [Internet]. 2021;779:No. 146443. 访问链接
Fang X, Hu M*, Shang DJ, Tan TY, Zhao G, Zong TM, Tang LZ, Ma XF, Yang XP, Dong HB, et al. New particle formation and its CCN enhancement in the Yangtze River Delta under the control of continental and marine air masses. Atmospheric Environment [Internet]. 2021;254:No. 118400. 访问链接
Tang LZ, Shang DJ, Fang X, Wu ZJ, Qiu YT, Chen SY, Li X, Zeng LM, Guo S, Hu M*. More Significant Impacts From New Particle Formation on Haze Formation During COVID-19 Lockdown. Geophysical Research Letters [Internet]. 2021;48(8): e2020GL091591. 访问链接
徐楠, 王甜甜, 李晓, 唐荣志, 郭松, 胡敏*. 北京冬季PM2.5中有机气溶胶的化学特征和来源解析. 环境科学 [Internet]. 2021;42(5):2101–2109. 访问链接PKU 
Wang ZH, Hu W*, Niu HY, Hu WW, Wu YS, Wu LB, Ren LJ, Deng JJ, Guo S, Wu ZJ, et al. Variations in physicochemical properties of airborne particles during a heavy haze-to-dust episode in Beijing. SCIENCE OF THE TOTAL ENVIRONMENT [Internet]. 2021;762:143081. 访问链接Abstract
The variations in physicochemical properties of airborne particles collected during a typical transition from haze to dust were investigated using single particle analysis with transmission and scanning electron microscopes combined with online measurement of chemical compositions of airborne particles in Beijing in February 2013. The transition was divided into three phases based on the weather condition. During haze pollution (Phase 1), gaseous and particle pollutants enhanced gradually. Results from single particle analysis showed that more coatings and more anthropogenic elements (e.g., S) appeared on the surface of fine and coarse particles, which was probably caused by efficient aqueous-phase reactions under high humidity (70%) condition. Phase 2 was dust intrusion episode. PM10 reached over 1000 mu g m(-3). Larger fractions of mineral particles and bare-like soot particles were observed in fine particles, while the fraction of secondary particles with coatings decreased. The proportion of black carbon in submicron particles also increased. Photochemical oxidation in gas phase likely dominated in secondary formation under high O-3 concentration. After the dust episode (Phase 3), secondary formation enhanced obviously. Soot aged quickly and had a larger mode of 0.45 mu m than the other phases. The size modes of airborne fine particles during Phases 1 and 3 were 0.35 mu m, which were a bit larger than that during Phase 2 (0.24 mu m). These results indicate that dust plumes accompanied with strong wind brought mineral particles in both fine and coarse modes and freshly emitted particles with smaller sizes, and swept away pre-presence air pollutants. This study could provide detailed information on the physicochemical properties of airborne particles during typical severe pollution processes in a short time. Such short-term change should be taken into account in order to more accurately assess the environmental, climatic and health-related effects of airborne particles.
Zhang Z, Zhu W, Hu M*, Wang H, Chen Z, Shen R, Yu Y, Tan R, Guo S. Secondary Organic Aerosol from Typical Chinese Domestic Cooking Emissions. Environmental Science and Technology Letters [Internet]. 2021;8(1):24–31. 访问链接Abstract
Cooking has been proven to be a significant source of primary organic aerosol, especially in megacities. However, the formation of secondary organic aerosol (SOA) derived from cooking emissions is still poorly understood. In this work, four prevalent Chinese domestic cooking types involving complicated cuisines and various cooking methods were chosen to conduct a lab simulation for SOA formation using a Gothenburg potential aerosol mass reactor (Go: PAM). After samples had been aged under OH exposures of 4.3–27.1 × 1010 molecules cm–3 s, the domestic cooking SOA was characterized by mass growth potentialities (1.81–3.16), elemental ratios (O/C = 0.29–0.41), and mass spectra. Compared with other organic aerosol (OA), domestic cooking SOA is a kind of less oxidized oxygenated OA (LO-OOA) with a unique oxidation pathway (alcohol/peroxide pathway) and mass spectra (characteristic peaks at m/z 28, 29, 41, 43, 44, 55, and 57). This study is expected to identify the cooking SOA under actual cooking conditions, which could contribute to the formulation of pollution source control as well as the health risk assessment of exposure to cooking fumes.
李晓, 范瀚允, 吴兴贺, 徐楠, 郭松, 胡敏*. 德州、北京重污染过程PM2.5中PAHs污染特征及来源分析. 环境科学研究 [Internet]. 2021;34(1):54-62. 访问链接AbstractPKU CSSCI
为探讨华北地区秋冬季重污染过程PM2.5(细颗粒物)中PAHs(多环芳烃)的污染水平、分布特征及来源,分别采集2018年11月17日—2019年1月19日德州市和北京市PM2.5样品利用气相色谱-质谱法测量两个站点6次重污染过程中26种PAHs浓度水平,分析PAHs污染特征、分子组成分布及其来源,并利用毒性当量因子估算了PAHs毒性.结果表明:①6次重污染过程中德州站点∑26PAHs浓度为62~191 ng/m3北京站点为61~129 ng/m3.②单位质量PM2.5中PAHs的浓度北京站点更高.③两个站点PAHs分子组成分布较为一致,萘、蒽、芴等低分子量的PAHs浓度较低,高分子量PAHs浓度较高,浓度最高的分别为苯并[b]荧蒽、苯并[a]芘、苯并[a]蒽和甲基荧蒽等.④特征比值结果显示,PAHs来源包括柴油车尾气、燃煤和生物质燃烧,德州站点受生物质燃烧影响更为显著.⑤毒性当量计算结果表明,德州站点毒性当量浓度(TEQ)高于北京站点,6次重污染过程中两个站点PAHs的TEQ平均值在6.5~17.2 ng/m3之间,低于国内其他一些地区,但苯并[a]芘的浓度在5.2~13.1 ng/m3之间,超过了GB 3095—2012《环境空气质量标准》日均值的标准限值(2.5 ng/m3),对人体健康存在潜在危害.研究显示:秋冬季重污染过程中北京站点单位质量PM2.5中PAHs的浓度较高,两个点位PAHs分子组成分布特征及来源较为相似且均对人体健康存在潜在危害;应进一步加强对PAHs浓度水平的控制这不仅有利于持续改善PM2.5污染,也有助于减轻人体潜在的健康风险.
Peng JF, Hu M*, Shang D, Wu Z, Du Z, Tan T, Wang Y, Zhang F, Zhang R*. Explosive Secondary Aerosol Formation during Severe Haze in the North China Plain. Environmental Science and Technology Letters [Internet]. 2021;55(4):2189-2207. 访问链接Abstract
Severe haze events with exceedingly high-levels of fine aerosols occur frequently over the past decades in the North China Plain (NCP), exerting profound impacts on human health, weather, and climate. The development of effective mitigation policies requires a comprehensive understanding of the haze formation mechanisms, including identification and quantification of the sources, formation, and transformation of the aerosol species. Haze evolution in this region exhibits distinct physical and chemical characteristics from clean to polluted periods, as evident from increasing stagnation and relative humidity, but decreasing solar radiation as well as explosive secondary aerosol formation. The latter is attributed to highly elevated concentrations of aerosol precursor gases and is reflected by rapid increases in the particle number and mass concentrations, both corresponding to nonequilibrium chemical processes. Considerable new knowledge has been acquired to understand the processes regulating haze formation, particularly in light of the progress in elucidating the aerosol formation mechanisms. This review synthesizes recent advances in understanding secondary aerosol formation, by highlighting several critical chemical/physical processes, that is, new particle formation and aerosol growth driven by photochemistry and aqueous chemistry as well as the interaction between aerosols and atmospheric stability. Current challenges and future research priorities are also discussed.
Shang D, Peng JF, Guo S, Wu Z, Hu M*. Secondary aerosol formation in winter haze over the Beijing-Tianjin-Hebei Region, China. Front. Environ. Sci. Eng. [Internet]. 2021;15(2):34. 访问链接