Wang H, Song Y, Miao L, Wan J, Chen X, Cheng X, Guo H, Zhang H.
Stamp-Assisted Gravure Printing of Micro-Supercapacitors with General Flexible Substrates. 2019 IEEE 32nd International Conference on Micro Electro Mechanical Systems (MEMS) [Internet]. 2019:950-953.
访问链接AbstractIn this paper, we present a scalable and general fabrication for micro-supercapacitors (MSCs) among various flexible substrates assisted by the stamp, which combines the conductive polymer composites with gravure printing process. Compared with the traditional transferring techniques, this method greatly simplifies the process and mitigates the mechanical damage during the preparation. Profiting from the composites of carbon nanotubes (CNTs) and polydimethylsiloxane (PDMS) as the printing inks, the MSCs exhibit elegant areal capacitance (10.491 μF/cm2) on the paper substrate. Meanwhile, optimizing the ratio of matrix and curing agent of PDMS, the interaction between ink and substrate is effectively enhanced. Therefore, such novel fabrication technology significantly improves the production efficiency as well as broadens the applications.
Miao L, Wan J, Guo H, Wang H, Song Y, Chen X, Zhang H.
Kirigami Cross-Shaped 3D Buckling Active Sensor for Detecting Stretching and Bending. 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems Eurosensors XXXIII (TRANSDUCERS EUROSENSORS XXXIII) [Internet]. 2019:2488-2491.
访问链接AbstractStretchable and movable 3D structure is a great choice for sensing stretching and bending. This paper reports a novel cross-shaped 3D buckling strain sensor based on polydimethylsiloxane (PDMS) substrate for detecting stretching and bending. Using pre-stretched PDMS, cross-shaped Polyimide (PI) film with conductive silver paint on its top surface as a 2D precursor can pop up as a dynamic 3D structure and possesses capacitive effect and triboelectric effect under different stretching and bending, which can detect stretching directions, strain value, bending axis direction and radius of curvature simultaneously, showing great potential in human and robot applications.
Guo H, Chen X, Miao L, Wang H, Wan J, Zhang H.
Self-Powered Transparent Stretchable 3D Motion Sensor. 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems Eurosensors XXXIII (TRANSDUCERS EUROSENSORS XXXIII) [Internet]. 2019:554-557.
访问链接AbstractThis paper reports a novel self-powered three-dimension motion sensor capable of independently detecting contact trajectory, pressure and velocity based on triboelectrification and electrostatic induction synchronously. Motion trajectories in the full plane can be identified by using a unique net-cross electrodes configuration design. In addition, the patterned silver nanowires (AgNWs) electrodes are sprayed onto the polydimethylsilane (PDMS) substrate to achieve good transparency and stretchability. By attaching the 3D motion sensor on human skin or robot surface directly, the 3D motion information of the object could be acquired including pressure, velocity and trajectory. The self-powered 3D motion sensor is a promising candidate in terms of human-computer interaction, anti-counterfeiting signatures, etc.