摘要:
Targeting nonpoint source (NPS) pollution hot spots is of vital importance for placement of best management practices (BMPs). Although physically-based watershed models have been widely used to estimate nutrient emissions, connections between nutrient abatement and compliance of water quality standards have been rarely considered in NPS hotspot ranking, which may lead to ineffective decision-making. It's critical to develop a strategy to identify priority management areas (PMAs) based on water quality response to nutrient load mitigation. A water quality constrained PMA identification framework was thereby proposed in this study, based on the simulation-optimization approach with ideal load reduction (ILR-SO). It integrates the physically-based Soil and Water Assessment Tool (SWAT) model and an optimization model under constraints of site-specific water quality standards. To our knowledge, it was the first effort to identify PMAs with simulation-based optimization. The SWAT model was established to simulate temporal and spatial nutrient loading and evaluate effectiveness of pollution mitigation. A metamodel was trained to establish a quantitative relationship between sources and water quality. Ranking of priority areas is based on required nutrient load reduction in each sub-watershed targeting to satisfy water quality standards in waterbodies, which was calculated with genetic algorithm (GA). The proposed approach was used for identification of PMAs on the basis of diffuse total phosphorus (TP) in Lake Dianchi Watershed, one of the three most eutrophic large lakes in China. The modeling results demonstrated that 85% of diffuse TP came from 30% of the watershed area. Compared with the two conventional targeting strategies based on overland nutrient loss and instream nutrient loading, the ILR-SO model identified distinct PMAs and narrowed down the coverage of management areas. This study addressed the urgent need to incorporate water quality response into PMA identification and showed that the ILR-SO approach is effective to guide watershed management for aquatic ecosystem restoration.