科研成果

2017
Mao G, Chen L, Yang Y, Wu Z, Tong T, Liu Y, Xie S. Vertical profiles of water and sediment denitrifiers in two plateau freshwater lakes. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY. 2017;101:3361-3370.Abstract SCI被引用次数:15.
The present study investigated the abundance, richness, diversity, and community composition of denitrifiers (based on nirS and nosZ genes) in the stratified water columns and sediments in eutrophic Dianchi Lake and mesotrophic Erhai Lake using quantitative PCR assay and high-throughput sequencing analysis. Both nirS- and nosZ denitrifiers were detected in waters of these two lakes. Surface water showed higher nosZ gene density than bottom water, and Dianchi Lake waters had larger nirS gene abundance than Erhai Lake waters. The abundance of sediment nirS- and nosZ denitrifiers in Dianchi Lake was larger than that in Erhai Lake. nirS richness and diversity and nosZ richness tended to increase with increasing sediment layer depth in both lakes. The distinct structure difference of sediment nirS- and nosZ denitrifier communities was found between in Dianchi Lake and Erhai Lake. These two lakes also differed greatly in water denitrifier community structure. Moreover, phylogenetic analysis indicated the presence of several different groups of nirS- or nosZ denitrifiers in both lakes. The novel nirS denitrifiers were abundant in both Dianchi Lake and Erhai Lake, while most of the obtained nosZ sequences could be affiliated with known genera.
2016
Zhang X, Liu Y, Guo H. Cross-lake comparisons of physical and biological settling of phosphorus: A phosphorus budget model with Bayesian hierarchical approach. ECOLOGICAL MODELLING. 2016;337:231-240.Abstract SCI被引用次数:3.
Phosphorus (P) is viewed as one limiting factor for phytoplankton growth in freshwater lakes. Simple budget models are very efficient for cross-lakes comparisons, while neglecting key distinction between algal P and other forms. Here, a phosphorus budget model was developed to balance between process resolution and cross-system applicability, in which lake total phosphorus (TP) was divided into algal-bound P and other fractions. The model was tested for six lakes on the Yunnan Plateau, China and the Markov Chain Monte Carlo (MCMC) algorithm of Bayesian hierarchical inference was employed for parameters estimation. The model results showed that (a) both algal species composition and P loading are key factors that influence the efficiency of converting phosphorus into algal P; (b) variability of the settling velocity of non-algal P and algal P decreases with increasing TP concentrations, representing a lower capacity for restoration; and (c) settling velocity declined exponentially with the increase of trophic state index, indicating a potential rapid rise of P removal rates during eutrophication restoration. Two conceptual models were then proposed to identify the prior countermeasures for eutrophication restoration in the lakes: (a) for Conceptual Model II, e.g. Lake Lugu, increasing the physical settling of phosphorus should be given priority to; (b) for Conceptual Model I, including the other five lakes, increasing the biological settling of phosphorus should be paid extra attention. (C) 2016 Elsevier B.V. All rights reserved.
Tan G, Xu N, Liu Y, Hao H, Sun W. Effects of lead concentration and accumulation on the performance and microbial community of aerobic granular sludge in sequencing batch reactors. ENVIRONMENTAL TECHNOLOGY. 2016;37:2905-2915.Abstract SCI被引用次数:6.
The present study investigated the effects of lead on the morphological structure, physical and chemical properties, wastewater treatment performance and microbial community structure of aerobic granular sludge (AGS) in sequencing batch reactors (SBRs). The results showed that at Pb2+ concentration of 1mg/L, the mixed liquid suspended solids decreased, the settling velocity increased and the sludge volume index increased sharply. Meanwhile, AGS began to disintegrate and show an irregular shape. In terms of wastewater treatment in an SBR, the phosphorus removal rate was affected only until the Pb2+ concentration was up to 1mg/L. The NH4+- N removal efficiency began to decline when the Pb2+ concentration increased to 6mg/L, while the removal of chemical oxygen demand increased slightly within the Pb2+ concentration range of 1-6mg/L. Significant changes were observed in the microbial community structure, especially the dominant bacteria. Compared to the Pb2+ accumulation on the sludge, the Pb2+ concentration in the aqueous phase played a more important role in the performance and microbial community of AGS in SBRs.
Zhang X, Zou R, Wang Y, Liu Y, Zhao L, Zhu X, Guo H. Is water age a reliable indicator for evaluating water quality effectiveness of water diversion projects in eutrophic lakes?. JOURNAL OF HYDROLOGY. 2016;542:281-291.Abstract SCI被引用次数:36.
Water diversion has been applied increasingly to promote the exchange of lake water and to control eutrophication of lakes. The accelerated water exchange and mass transport by water diversion can usually be represented by water age. But the responses of water quality after water diversion is still disputed. The reliability of using water age for evaluating the effectiveness of water diversion projects in eutrophic lakes should be thereby explored further. Lake Dianchi, a semi-closed plateau lake in China, has suffered severe eutrophication since the 1980s, and it is one of the three most eutrophic lakes in China. There was no significant improvement in water quality after an investment of approximately 7.7 billion USD and numerous project efforts from 1996 to 2015. After the approval of the Chinese State Council, water has been transferred to Lake Dianchi to alleviate eutrophication since December 2013. A three-dimensional hydrodynamic and water quality model and eight scenarios were developed in this study to quantity the influence of this water diversion project on water quality in Lake Dianchi. The model results showed that (a) Water quality (TP, TN, and Chla) could be improved by 13.5-32.2%, much lower than the approximate 50% reduction in water age; (b) Water exchange had a strong positive relationship with mean TP, and mean Chla had exactly the same response to water diversion as mean TN; (c) Water level was more beneficial for improving hydrodynamic and nutrient concentrations than variation in the diverted inflowing water volume; (d) The water diversion scenario of doubling the diverted inflow rate in the wet season with the water level of 1886.5 m and 1887 m in the remaining months was the best water diversion mode for mean hydrodynamics and TP, but the scenario of doubling the diverted inflow rate in the wet season with 1887 m throughout the year was optimum for mean TN and Chla; (e) Water age influenced the effectiveness of water diversion on the improvement in TP, but not in TN and Chla. Therefore, water age solely could not be used to evaluate the restoration of water quality in a eutrophic lake, because geobiochemical processes played a more important role in the growth of algae than did water exchange in Lake Dianchi. (C) 2016 Elsevier B.V. All rights reserved.
Chen Y, Dai Y, Wang Y, Wu Z, Xie S, Liu Y. Distribution of bacterial communities across plateau freshwater lake and upslope soils. JOURNAL OF ENVIRONMENTAL SCIENCES. 2016;43:61-69.Abstract SCI被引用次数:23.
Microorganisms are involved in a variety of biogeochemical processes in natural environments. The differences between bacterial communities in freshwaters and upslope soils remain unclear. The present study investigated the bacterial distribution in a plateau freshwater lake, Erhai Lake (southwestern China), and its upslope soils. Illumina MiSeq sequencing illustrated high bacterial diversity in lake sediments and soils. Sediment and soil bacterial communities were mainly composed of Proteobacteria, Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi and Planctomycetes. However, a distinctive difference in bacterial community structure was found between soil and sediment ecosystems. Water content, nitrogen and pH affected the distribution of the bacterial community across Erhai Lake and its upslope soils. Moreover, the soil bacterial community might also be shaped by plant types. This work could provide some new insights into plateau aquatic and terrestrial microbial ecology. (C) 2015 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V.
Dai Y, Yang Y, Wu Z, Feng Q, Xie S, Liu Y. Spatiotemporal variation of planktonic and sediment bacterial assemblages in two plateau freshwater lakes at different trophic status. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY. 2016;100:4161-4175.Abstract SCI被引用次数:70.
Both planktonic and sediment bacterial assemblages are the important components of freshwater lake ecosystems. However, their spatiotemporal shift and the driving forces remain still elusive. Eutrotrophic Dianchi Lake and mesotrophic Erhai Lake are the largest two freshwater lakes on the Yunnan Plateau (southwestern China). The present study investigated the spatiotemporal shift in both planktonic and sediment bacterial populations in these two plateau freshwater lakes at different trophic status. For either lake, both water and sediment samples were collected from six sampling locations in spring and summer. Bacterioplankton community abundance in Dianchi Lake generally far outnumbered that in Erhai Lake. Sediment bacterial communities in Erhai Lake were found to have higher richness and diversity than those in Dianchi Lake. Sediments had higher bacterial community richness and diversity than waters. The change patterns for both planktonic and sediment bacterial communities were lake-specific and season-specific. Either planktonic or sediment bacterial community structure showed a distinct difference between in Dianchi Lake and in Erhai Lake, and an evident structure difference was also found between planktonic and sediment bacterial communities in either of these two lakes. Planktonic bacterial communities in both Dianchi Lake and Erhai Lake mainly included Proteobacteria (mainly Alpha-, Beta-, and Gammaproteobacteria), Bacteroidetes, Actinobacteria, Cyanobacteria, and Firmicutes, while sediment bacterial communities were mainly represented by Proteobacteria (mainly Beta- and Deltaproteobacteria), Bacteroidetes, Chlorobi, Nitrospirae, Acidobacteria, and Chloroflexi. Trophic status could play important roles in shaping both planktonic and sediment bacterial communities in freshwater lakes.
Yang Y, Dai Y, Wu Z, Xie S, Liu Y. Temporal and Spatial Dynamics of Archaeal Communities in Two Freshwater Lakes at Different Trophic Status. FRONTIERS IN MICROBIOLOGY. 2016;7.Abstract SCI被引用次数:34.
In either eutrophic Dianchi Lake or mesotrophic Erhai Lake, the abundance, diversity, and structure of archaeaplankton communities in spring were different from those in summer. In summer, archaeaplankton abundance generally decreased in Dianchi Lake but increased in Erhai Lake, while archaeaplankton diversity increased in both lakes. These two lakes had distinct archaeaplankton community structure. Archaeaplankton abundance was influenced by organic content, while trophic status determined archaeaplankton diversity and structure. Moreover, in summer, lake sediment archaeal abundance considerably decreased. Sediment archaeal abundance showed a remarkable spatial change in spring but only a slight one in summer. The evident spatial change of sediment archaeal diversity occurred in both seasons. In Dianchi Lake, sediment archaeal community structure in summer was remarkably different from that in spring. Compared to Erhai Lake, Dianchi Lake had relatively high sediment archaeal abundance but low diversity. These two lakes differed remarkably in sediment archaeal community structure. Trophic status determined sediment archaeal abundance, diversity and structure. Archaeal diversity in sediment was much higher than that in water. Water and sediment habitats differed greatly in archaeal community structure. Euryarchaeota predominated in water column, but showed much lower proportion in sediment. Bathyarchaeota was an important component of sediment archaeal community.
Yang Y, Zhao Q, Cui Y, Wang Y, Xie S, Liu Y. Spatio-temporal Variation of Sediment Methanotrophic Microorganisms in a Large Eutrophic Lake. MICROBIAL ECOLOGY. 2016;71:9-17.Abstract SCI被引用次数:18.
Aerobic methane-oxidizing bacteria (MOB) play a crucial role in mitigating the methane emission from lake ecosystems to the atmosphere. However, the distribution of methanotrophic community in shallow and eutrophic lake and its influential factors remain essentially unclear. The present study investigated sediment methanotrophic microorganisms at different sites in eutrophic freshwater Dianchi Lake (China) in two different seasons. The abundance, diversity, and structure of sediment methanotrophic community showed a profound spatial and seasonal variation. The pmoA gene copy number in lake sediments ranged from 8.71 +/- 0.49 x 10(4) to 2.09 +/- 0.03 x 10(7) copies per gram of dry sediment. Sediment methanotrophic communities were composed of Methylococcus and Methylobacter (type I methanotrophs) and Methylosinus (type II methanotrophs), while type I MOB usually outnumbered type II MOB. Moreover, ammonia nitrogen was found to be a potential determinant of methanotrophic community structure in Dianchi Lake.
Dong F, Liu Y, Su H, Liang Z, Zou R, Guo H. Uncertainty-Based Multi-Objective Decision Making with Hierarchical Reliability Analysis Under Water Resources and Environmental Constraints. WATER RESOURCES MANAGEMENT. 2016;30:805-822.Abstract SCI被引用次数:12.
Rapid urbanization and population growth have resulted in worldwide serious water shortage and environmental deterioration. It is then essential for efficient and feasible allocation of scarce water and environment resources to the competing users. Due to inherent uncertainties, decision making for resources allocation is vulnerable to failure. The scheme feasibility can be evaluated by reliability, representing the failure probability. A progressive reliability oriented multi-objective (PROMO) optimal decision-making procedure is proposed in this study to deal with problems with numerous reliability objectives. Dimensionality of the objectives is reduced by a top-down hierarchical reliability analysis (HRA) process combining optimization with evaluation. Pareto solutions of the reformulated model, representing alternative schemes non-dominated with each other, are generated by a metalmodel-based optimization algorithm. Evaluation and identification of Pareto solutions are conducted by multi-criteria decision analysis (MCDA). The PROMO procedure is demonstrated for a case study on industrial structure transformation under strict constraints of water resources and total environmental emissions amounts in Guangzhou City, South China. The Pareto front reveals tradeoffs between economic returns of the industries and system reliability. For different reliability preference scenarios, the Pareto solutions are ranked and the top-rated one was recommended for implementation. The model results indicate that the PROMO procedure is effective for model solving and scheme selection of uncertainty-based multi-objective decision making.
Yang P, Dong F, Liu Y, Zou R, Chen X, Guo H. A refined risk explicit interval linear programming approach for optimal watershed load reduction with objective-constraint uncertainty tradeoff analysis. FRONTIERS OF ENVIRONMENTAL SCIENCE & ENGINEERING. 2016;10:129-140.Abstract SCI被引用次数:6.
To enhance the effectiveness of watershed load reduction decision making, the Risk Explicit Interval Linear Programming (REILP) approach was developed in previous studies to address decision risks and system returns. However, REILP lacks the capability to analyze the tradeoff between risks in the objective function and constraints. Therefore, a refined REILP model is proposed in this study to further enhance the decision support capability of the REILP approach for optimal watershed load reduction. By introducing a tradeoff factor (alpha) into the total risk function, the refined REILP can lead to different compromises between risks associated with the objective functions and the constraints. The proposed model was illustrated using a case study that deals with uncertainty-based optimal load reduction decision making for Lake Qionghai Watershed, China. A risk tradeoff curve with different values of alpha was presented to decision makers as a more flexible platform to support decision formulation. The results of the standard and refined REILP model were compared under 11 aspiration levels. The results demonstrate that, by applying the refined REILP, it is possible to obtain solutions that preserve the same constraint risk as that in the standard REILP but with lower objective risk, which can provide more effective guidance for decision makers.
Yang Y, Zhang J, Zhao Q, Zhou Q, Li N, Wang Y, Xie S, Liu Y. Sediment Ammonia-Oxidizing Microorganisms in Two Plateau Freshwater Lakes at Different Trophic States. MICROBIAL ECOLOGY. 2016;71:257-265.Abstract SCI被引用次数:32.
Both ammonia-oxidizing archaea (AOA) and bacteria (AOB) can contribute to ammonia biotransformation in freshwater lake ecosystems. However, the factors shaping the distribution of sediment AOA and AOB in plateau freshwater lake remains unclear. The present study investigated sediment AOA and AOB communities in two freshwater lakes (hypertrophic Dianchi Lake and mesotrophic Erhai Lake) on the Yunnan Plateau (China). A remarkable difference in the abundance, diversity, and composition of sediment AOA and AOB communities was observed between Dianchi Lake and Erhai Lake. AOB usually outnumbered AOA in Dianchi Lake, but AOA showed the dominance in Erhai Lake. Organic matter (OM), total nitrogen (TN), and total phosphorus (TP) might be the key determinants of AOB abundance, while AOA abundance was likely influenced by the ration of OM to TN (C/N). AOA or AOB community structure was found to be relatively similar in the same lake. TN and TP might play important roles in shaping sediment AOA and AOB compositions in Dianchi Lake and Erhai Lake. Moreover, Nitrososphaera-like AOA were detected in Dianchi Lake. Nitrosospira- and Nitrosomonas-like AOB were dominant in Dianchi Lake and Erhai Lake, respectively. Sediment AOA and AOB communities in Dianchi Lake and Erhai Lake were generally regulated by trophic state.
Yang Y, Li N, Zhao Q, Yang M, Wu Z, Xie S, Liu Y. Ammonia-oxidizing archaea and bacteria in water columns and sediments of a highly eutrophic plateau freshwater lake. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH. 2016;23:15358-15369.Abstract SCI被引用次数:14.
Both ammonia-oxidizing archaea (AOA) and bacteria (AOB) can play important roles in the microbial oxidation of ammonia nitrogen in freshwater lake, but information on spatiotemporal variation in water column and sediment community structure is still limited. Additionally, the drivers of the differences between sediment and water assemblages are still unclear. The present study investigated the variation of AOA and AOB communities in both water columns and sediments of eutrophic freshwater Dianchi Lake. The abundance, diversity, and structure of both planktonic and sediment ammonia-oxidizing microorganisms in Dianchi Lake showed the evident changes with sampling site and time. In both water columns and sediments, AOB amoA gene generally outnumbered AOA, and the AOB/AOA ratio was much higher in summer than in autumn. The total AOA amoA abundance was relatively great in autumn, while sediment AOB was relatively abundant in summer. Sediment AOA amoA abundance was likely correlated with ammonia nitrogen (rs = 0.963). The AOB/AOA ratio in lake sediment was positively correlated with total phosphorus (rs = 0.835), while pH, dissolved organic carbon, and ammonia nitrogen might be the key driving forces for the AOB/AOA ratio in lake water. Sediment AOA and AOB diversity was correlated with nitrate nitrogen (rs = -0.786) and total organic carbon (rs = 0.769), respectively, while planktonic AOB diversity was correlated with ammonia nitrogen (rs = 0.854). Surface water and sediment in the same location had a distinctively different microbial community structure. In addition, sediment AOB community structure was influenced by total phosphorus, while total phosphorus might be a key determinant of planktonic AOB community structure.
2015
Li Y, Liu Y, Zhao L, Hastings A, Guo H. Exploring change of internal nutrients cycling in a shallow lake: A dynamic nutrient driven phytoplankton model. ECOLOGICAL MODELLING. 2015;313:137-148.Abstract SCI被引用次数:32.
Lake eutrophication is associated with excessive nutrient enrichment and unobserved internal nutrient cycling. In spite of advances in understanding the role of nitrogen (N) and phosphorus (P) cycling in eutrophication, the relative importance of N and P limitation and release from sediment is still an open question. The complicated interaction between N and P cycling and external driving factors leads to dynamics in N or P limitation patterns and internal release that change over time. We developed a nutrient-driven model of phytoplankton dynamics including the critical nutrient cycling processes. It was fitted using Bayesian inference to explore the roles of N and P inputs from external sources, net sediment release, and internal dynamics in Lake Yilong, a shallow eutrophic lake in China. The model provided a good fit to observations, with time-varying parameters required to fit time-dependent variations in the sediment release process. The results demonstrated that, in Lake Yilong, the pattern of nutrient limitation showed a transformation from P limitation to N and P co-limitation after an observed regime shift occurred in 2008. After the shift in 2008, sediment release had an increasing influence on N and P supply, which could make eutrophication remediation more difficult. For Lake Yilong, it would not be possible to reverse eutrophication solely with watershed nutrient load reduction so in-lake manipulation of physical chemical conditions to inhibit the sediments release should also be considered. (C) 2015 Elsevier B.V. All rights reserved.
Dai Y, Wu Z, Zhou Q, Zhao Q, Li N, Xie S, Liu Y. Activity, abundance and structure of ammonia-oxidizing microorganisms in plateau soils. RESEARCH IN MICROBIOLOGY. 2015;166:655-663.Abstract SCI被引用次数:7.
Both ammonia-oxidizing archaea (AOA) and bacteria (AOB) can be involved in biotransformation of ammonia to nitrite in soil ecosystems. However, the distribution of AOA and AOB in plateau soils and influential factors remain largely unclear. In the present study, the activity, abundance and structure of ammonia oxidizers in different soils on the Yunnan Plateau were assessed using potential nitrification rates (PNRs), quantitative PCR assay and clone library analysis, respectively. Wide variation was found in both AOA and AOB communities in plateau soils. PNRs showed a significant positive correlation with AOB abundance. Both were determined by the ratio of organic carbon to nitrogen (C/N) and total phosphorous (TP). AOB could play a more important role in ammonia oxidation. AOB community diversity was likely affected by soil total nitrogen (TN) and total organic carbon (TOC) and was usually higher than AOA community diversity. Moreover, Nitrososphaera- and Nitrosospira-like organisms, respectively, were the dominant AOA and AOB in plateau soils. AOA community structure was likely shaped by TP and C/N, while AOB community structure was determined by pH. (c) 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Gao W, Swaney DP, Hong B, Howarth RW, Liu Y, Guo H. Evaluating anthropogenic N inputs to diverse lake basins: A case study of three Chinese lakes. AMBIO. 2015;44:635-646.Abstract SCI被引用次数:15.
The environmental degradation of lakes in China has become increasingly serious over the last 30 years and eutrophication resulting from enhanced nutrient inputs is considered a top threat. In this study, a quasi-mass balance method, net anthropogenic N inputs (NANI), was introduced to assess the human influence on N input into three typical Chinese lake basins. The resultant NANI exceeded 10 000 kg N km(-2) year(-1) for all three basins, and mineral fertilizers were generally the largest sources. However, rapid urbanization and shrinking agricultural production capability may significantly increase N inputs from food and feed imports. Higher percentages of NANI were observed to be exported at urban river outlets, suggesting the acceleration of NANI transfer to rivers by urbanization. Over the last decade, the N inputs have declined in the basins dominated by the fertilizer use but have increased in the basins dominated by the food and feed import. In the foreseeable future, urban areas may arise as new hotspots for nitrogen in China while fertilizer use may decline in importance in areas of high population density.
Dai Y, Wu Z, Xie S, Liu Y. Methanotrophic community abundance and composition in plateau soils with different plant species and plantation ways. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY. 2015;99:9237-9244.Abstract SCI被引用次数:4.
Aerobic methane-oxidizing bacteria (MOB) play an important role in mitigating the methane emission in soil ecosystems to the atmosphere. However, the impact of plant species and plantation ways on the distribution of MOB remains unclear. The present study investigated MOB abundance and structure in plateau soils with different plant species and plantation ways (natural and managed). Soils were collected from unmanaged wild grassland and naturally forested sites, and managed farmland and afforested sites. A large variation in MOB abundance and structure was found in these studied soils. In addition, both type I MOB (Methylocaldum) and type II MOB (Methylocystis) were detected in these soils, while type II MOB usually outnumbered type I MOB. The distribution of soil MOB community was found to be collectively regulated by plantation way, plant species, the altitude of sampling site, and soil properties.
Liu H, Benoit G, Liu T, Liu Y, Guo H. An integrated system dynamics model developed for managing lake water quality at the watershed scale. JOURNAL OF ENVIRONMENTAL MANAGEMENT. 2015;155:11-23.Abstract SCI被引用次数:51.
A reliable system simulation to relate socioeconomic development with water environment and to comprehensively represent a watershed's dynamic features is important. In this study, after identifying lake watershed system processes, we developed a system dynamics modeling framework for managing lake water quality at the watershed scale. Two reinforcing loops (Development and Investment Promotion) and three balancing loops (Pollution, Resource Consumption, and Pollution Control) were constituted. Based on this work, we constructed Stock and Flow Diagrams that embedded a pollutant load model and a lake water quality model into a socioeconomic system dynamics model. The Dianchi Lake in Yunnan Province, China, which is the sixth largest and among the most severely polluted freshwater lakes in China, was employed as a case study to demonstrate the applicability of the model. Water quality parameters considered in the model included chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP). The business-as-usual (BAU) scenario and three alternative management scenarios on spatial adjustment of industries and population (Si), wastewater treatment capacity construction (S2), and structural adjustment of agriculture (S3), were simulated to assess the effectiveness of certain policies in improving water quality. Results showed that S2 is most effective scenario, and the COD, TN, and TP concentrations in Caohai in 2030 are 52.5, 10.9, and 0.8 mg/L, while those in Waihai are 9.6, 1.2, and 0.08 mg/L, with sustained development in the watershed. Thus, the model can help support the decision making required in development and environmental protection strategies. (C) 2015 Elsevier Ltd. All rights reserved.
Dong F, Liu Y, Su H, Zou R, Guo H. Reliability-oriented multi-objective optimal decision-making approach for uncertainty-based watershed load reduction. SCIENCE OF THE TOTAL ENVIRONMENT. 2015;515:39-48.Abstract SCI被引用次数:11.
Water quality management and load reduction are subject to inherent uncertainties in watershed systems and competing decision objectives. Therefore, optimal decision-making modeling in watershed load reduction is suffering due to the following challenges: (a) it is difficult to obtain absolutely ``optimal'' solutions, and (b) decision schemes may be vulnerable to failure. The probability that solutions are feasible under uncertainties is defined as reliability. A reliability-oriented multi-objective (ROMO) decision-making approach was proposed in this study for optimal decision making with stochastic parameters and multiple decision reliability objectives. Lake Dianchi, one of the three most eutrophic lakes in China, was examined as a case study for optimal watershed nutrient load reduction to restore lake water quality. This study aimed to maximize reliability levels from considerations of cost and load reductions. The Pareto solutions of the ROMO optimization model were generated with the multiobjective evolutionary algorithm, demonstrating schemes representing different biases towards reliability. The Pareto fronts of six maximum allowable emission (MAE) scenarios were obtained, which indicated that decisions may be unreliable under unpractical load reduction requirements. A decision scheme identification process was conducted using the back propagation neural network (BPNN) method to provide a shortcut for identifying schemes at specific reliability levels for decision makers. The model results indicated that the ROMO approach can offer decision makers great insights into reliability tradeoffs and can thus help them to avoid ineffective decisions. (C) 2015 Elsevier B.V. All rights reserved.
Liu Y, Zhang J, Zhao L, Li Y, Dai Y, Xie S. Distribution of sediment ammonia-oxidizing microorganisms in plateau freshwater lakes. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY. 2015;99:4435-4444.Abstract SCI被引用次数:26.
Both ammonia-oxidizing bacteria (AOB) and archaea (AOA) can play important roles in ammonia biotransformation in ecosystems. However, the factors regulating the distribution of these microorganisms in lacustrine ecosystems remain essentially unclear. The present study investigated the effects of geographic location on the distribution of sediment AOA and AOB in 13 freshwater lakes on the Yunnan Plateau (China). The spatial dissimilarity in the abundance and structure of sediment AOA and AOB communities was observed in these plateau lakes. AOA abundance was usually less than AOB abundance, and the AOA/AOB ratio was positively correlated with water depth. Nitrososphaera-like AOA occurred in most of the studied lakes and were dominant in two lakes. Nitrosospira was the dominant AOB species in most of the lakes, while Nitrosomonas showed high abundance only in three lakes. In addition, geographic location was found to affect lake sediment AOB community structure.
Zhou J, He D, Xie Y, Liu Y, Yang Y, Sheng H, Guo H, Zhao L, Zou R. Integrated SWAT model and statistical downscaling for estimating streamflow response to climate change in the Lake Dianchi watershed, China. STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT. 2015;29:1193-1210.Abstract SCI被引用次数:27.
Understanding the relationships between hydrological regime and climate change is important for water resources management. In this study, the streamflow response to climate change was investigated in the Lake Dianchi watershed, which is one of the most important eutrophic lakes in China. Daily time-series of temperature and precipitation in the future periods (2020, 2050 and 2080s) were projected from HadCM3 model. Statistical downscaling model (SDSM) and the previously calibrated and validated Soil and water assessment tool (SWAT) model were used to quantify the impacts of climate change on streamflow in this watershed. The results showed that SDSM can well capture the statistical relationships between the large scale climate variables and the observed weather at regional scale. The downscaled results showed that annual average maximum and minimum temperature would rise by 4.28 (3.25) and 4.71 A degrees C (3.33 A degrees C) in the 2080s under A2 (B2) scenario. Annual average precipitation would decrease within the range between 20.34 and 74.12 mm under both scenarios in the future. Based on SWAT model simulation, annual average streamflow would decrease in the future by the declination of -7.12 to -21.83 % and -6.34 to -17.09 % under A2 (B2) scenarios in the outlet of this watershed. The frequency of drought and extreme rainfall events would increase in the future, which is not beneficial to protect Lake Dianchi. This study could lead to a better understanding of the streamflow response under climate change and also raised concerns about the sustainability of future water resources in Lake Dianchi watershed.

Pages