2022
Hou Y, Liu F, Zhang B, Tong M.
Thiadiazole-Based Covalent Organic Frameworks with a Donor–Acceptor Structure: Modulating Intermolecular Charge Transfer for Efficient Photocatalytic Degradation of Typical Emerging Contaminants. Environmental Science & Technology [Internet]. 2022;56(22):16303-16314.
访问链接AbstractAs novel metal-free photocatalysts, covalent organic frameworks (COFs) have great potential to decontaminate pollutants in water. Fast charge recombination in COFs yet inhibits their photocatalytic performance. We found that the intramolecular charge transfer within COFs could be modulated via constructing a donor–acceptor (D–A) structure, leading to the improved photocatalytic performance of COFs toward pollutant degradation. By integrating electron donor units (1,3,4-thiadiazole or 1,2,4-thiadiazole ring) and electron acceptor units (quinone), two COFs (COF-TD1 and COF-TD2) with robust D–A characteristics were fabricated as visible-light-driven photocatalysts to decontaminate paracetamol. With the readily excited electrons in 1,3,4-thiadiazole rings, COF-TD1 exhibited efficient electron–hole separation through a push–pull electronic effect, resulting in superior paracetamol photodegradation performance (>98% degradation in 60 min) than COF-TD2 (∼60% degradation within 120 min). COF-TD1 could efficiently photodegrade paracetamol in complicated water matrices even in river water, lake water, and sewage wastewater. Diclofenac, bisphenol A, naproxen, and tetracycline hydrochloride were also effectively degraded by COF-TD1. Efficient photodegradation of paracetamol in a scaled-up reactor could be achieved either by COF-TD1 in a powder form or that immobilized onto a glass slide (to further ease recovery and reuse) under natural sunlight irradiation. Overall, this study provided an effective strategy for designing excellent COF-based photocatalysts to degrade emerging contaminants.
Hsieh L, He L, Zhang M, Lv W, Yang K, Tong M.
Addition of biochar as thin preamble layer into sand filtration columns could improve the microplastics removal from water. Water Research [Internet]. 2022;221:118783.
访问链接AbstractThe release of microplastics (MPs) especially those with sizes less than 10 μm from effluent of wastewater treatment plants (WWTPs) is one of the major sources of plastics into aquatic environment. To reduce the discharge of MPs into environment, it is essential to further enhance their removal efficiencies in WWTPs. In present study, to boost the removal performance of MPs in sand filtration systems (units that commonly employed in WWTPs to remove colloidal pollutants), six types of biochar fabricated from three raw biomass materials (i.e. lignin, cellulose, and woodchips) at two pyrolysis temperatures (400 °C and 700 °C) was respectively amended into sand columns as thin permeable layer. We found that adding all six types of biochar into sand columns as thin permeable layer could greatly improve the retention of MPs with the diameter of 1 μm under either slow (4 m/d) or fast flow rates (160 m/d) due to the high adsorption capability of biochar. Woodchip-derived biochar exhibited the highest MPs retention performance, which was followed by cellulose-derived biochar and then lignin-derived biochar. Moreover, for biochar derived from three raw biomasses, increasing pyrolysis temperature could improve MPs retention performance. The direct observation of real-time plastics retention processes on different types of biochar via a visible flow chamber showed that woodchip-derived biochar especially that fabricated at 700 °C exhibited more MPs trapping processes relative to lignin and cellulose-derived biochar due to their more complex surface morphology. Thus, the highest MPs retention performance was achieved in sand columns with amendment by 1 wt% woodchip-derived biochar fabricated at 700 °C. More importantly, we found that for these modified sand filtration column systems, complete MPs removal could be achieved in real river water and actual sewage water, in multiple filtration cycles, longtime filtration process (100 pore volumes injection) as well as with interval flow conditions. Moreover, biochar could be regenerated and reused as thin permeable layer to effectively remove MPs. The results of this study clearly showed that biochar especially woodchip-derived biochar fabricated at 700 °C had the potential to immobilize MPs especially those with small sizes in WWTPs.
He L, Li M, Wu D, Guo J, Zhang M, Tong M.
Freeze-thaw cycles induce diverse bacteria release behaviors from quartz sand columns with different water saturations. Water Research [Internet]. 2022;221:118683.
访问链接AbstractBacteria present in natural environment especially those in cold regions would experience freeze-thaw (FT) process during day-night and season turns. However, knowledge about the influence of FT on bacteria release behaviors in porous media was limited. In present study, the bacteria release behaviors from quartz sand columns without and with 1 and 3 FT treatment cycles under three water saturations (θ=100%, 90%, and 60%) were investigated. We found that for all three water saturated columns without FT treatment, negligible bacteria released from columns via background salt solution elution, while the subsequent release of bacteria from sand columns via low ionic strength (IS) solution elution decreased with decreasing column water saturations. More importantly, we found unlike the negligible bacteria release in columns without FT treatment, for columns with high saturations (θ=100% and 90%), FT treatment could promote bacteria release with background salt solution elution. Moreover, for high saturated columns, FT treatment would decrease subsequent bacteria release with low IS solution elution. This phenomenon was more obvious with increasing FT treatment cycles. In contrast, FT treatment had negligible influence on bacteria release from columns with lower saturation (θ=60%). The decreased bacterial sizes, the loss of bacterial flagella, as well as the change of local configuration of porous media (via changing water into ice and ice back into water) during the FT processes contributed to increased bacteria release via background salt solution elution from high saturated sand columns. While, the reduced amount of bacteria being retained at secondary energy minima drove to the subsequently decreased bacteria release via low IS solution elution. The results of this study clearly showed that for porous media with high saturations, FT cycles would increase the risk of bacteria detaching from porous media with flushing by the background solution.
Liu F, Li Z, Dong Q, Nie C, Wang S, Zhang B, Han P, Tong M.
Catalyst-Free Periodate Activation by Solar Irradiation for Bacterial Disinfection: Performance and Mechanisms. Environmental Science and Technology [Internet]. 2022;56(7):4413-4424.
访问链接AbstractPeriodate (PI)-based advanced oxidation process has recently attracted great attention in the water treatment processes. In this study, solar irradiation was used for PI activation to disinfect waterborne bacteria. The PI/solar irradiation system could inactivate Escherichia coli below the limit of detection (LOD, 10 CFU mL–1) with initial concentrations of 1 × 106, 1 × 107, and 1 × 108 CFU mL–1 within 20, 40, and 100 min, respectively. •O2– and •OH radicals contributed to the bacterial disinfection. These reactive radicals could attack and penetrate the cell membrane, thereby increasing the amount of intracellular reactive oxygen species and destroying the intracellular defense system. The damage of the cell membrane caused the leakage of intracellular K+ and DNA (that could be eventually degraded). Excellent bacterial disinfection performance in PI/solar irradiation systems was achieved in a wide range of solution pH (3–9), with coexisting humic acid (0.1–10 mg L–1) and broad solution ionic strengths (15–600 mM). The PI/solar irradiation system could also efficiently inactivate Gram-positive Bacillus subtilis. Moreover, PI activated by natural sunlight irradiation could inactivate 1 × 107 CFU mL–1 viable E. coli below the LOD in the river and sea waters with a working volume of 1 L in 40 and 50 min, respectively. Clearly, the PI/solar system could be potentially applied to disinfect bacteria in water.
Zhang M, He L, Zhang X, Wang S, Zhang B, Hsieh L, Yang K, Tong M.
Improved removal performance of Gram-negative and Gram-positive bacteria in sand filtration system with arginine modified biochar amendment. Water Research [Internet]. 2022;211:118006.
访问链接AbstractBacterial removal by sand filtration system is commonly inefficient due to the low bacterial adsorption capacity of sand. To improve the bacterial removal performance, biochar fabricated at different temperatures (400 °C, 550 °C and 700 °C) and arginine modified biochar were added into sand filtration columns as filter layers (0.5 and 1 wt%). Addition of biochar into sand columns could improve the removal efficiency for both Escherichia coli and Bacillus subtilis under both slow (4 m/day) and fast (240 m/day) filtration conditions. Bacterial removal efficiency in sand columns with the addition of biochar fabricated at 700 °C were higher than those fabricated at 400 °C and 550 °C due to its best bacterial adsorption capacity. Modification of biochar with arginine could further improve the bacterial removal performance. Specifically, complete bacterial removal (1.35 × 107 ± 10% cells/mL) could be achieved under both slow and fast filtration conditions in sand columns with 1 wt% arginine functionalized biochar amendment. The enhanced bacterial adsorption capacity mainly contributed to the increased bacterial capture performance in columns with addition of arginine-modified biochar. Bacteria more tightly bounded with arginine-modified biochar than bulk biochar. Moreover, complete bacterial removal with the copresence of 5 mg/L humic acid in suspensions was acquired in columns with addition of 1 wt% arginine-modified biochar. Efficient bacterial removal in actual river water, multiple filtration cycles as well as longtime injection duration (100 pore volumes injection) was also obtained. The results of this study demonstrated that arginine-modified biochar had great potential to treat water contaminated by pathogenic bacteria.