科研成果 by Type: 期刊论文

2024
Hou Y, Zhou P, Liu F, Lu Y, Tan H, Li Z, Tong M, Ni J. Efficient Photosynthesis of Hydrogen Peroxide by Cyano-Containing Covalent Organic Frameworks from Water, Air and Sunlight. Angewandte Chemie International Edition [Internet]. 2024;63:e202318562. 访问链接Abstract
Abstract The insufficient exciton (e−-h+ pair) separation/transfer and sluggish two-electron water oxidation are two main factors limiting the H2O2 photosynthetic efficiency of covalent organic frameworks (COFs) photocatalysts. Herein, we present an alternative strategy to simultaneously facilitate exciton separation/transfer and reduce the energy barrier of two-electron water oxidation in COFs via a dicyano functionalization. The in situ characterization and theoretical calculations reveal that the dicyano functionalization improves the amount of charge transfer channels between donor and acceptor units from two in COF-0CN without cyano functionalization to three in COF-1CN with mono-cyano functionalization and four in COF-2CN with dicyano functionalization, leading to the highest separation/transfer efficiency in COF-2CN. More importantly, the dicyano group activates the neighbouring C atom to produce the key *OH intermediate for effectively reducing the energy barrier of rate-determining two-electron water oxidation in H2O2 photosynthesis. The simultaneously enhanced exciton separation/transfer and two-electron water oxidation in COF-2CN result in high H2O2 yield (1601 μmol g−1 h−1) from water and oxygen without using sacrificial reagent under visible-light irradiation. COF-2CN can effectively yield H2O2 in water with wide pH range, in different real water samples, in scaled-up reactor under natural sunlight irradiation, and in continuous-flow reactor for consecutively producing H2O2 solution for water decontamination.
2023
Hou Y, Liu F, Nie C, Li Z, Tong M. Boosting Exciton Dissociation and Charge Transfer in Triazole-Based Covalent Organic Frameworks by Increasing the Donor Unit from One to Two for the Efficient Photocatalytic Elimination of Emerging Contaminants. Environmental Science & Technology [Internet]. 2023;57:11675-11686. 访问链接Abstract
As novel photocatalysts, covalent organic frameworks (COFs) have potential for water purification. Insufficient exciton dissociation and low charge mobility in COFs yet restricted their photocatalytic activity. Excitonic dissociation and charge transfer in COFs could be optimized via regulating the donor–acceptor (D–A) interactions through adjusting the number of donor units within COFs, yet relevant research is lacking. By integrating the 1,2,4-triazole or bis-1,2,4-triazole unit with quinone, we fabricated COF-DT (with a single donor unit) and COF-DBT (with double donor units) via a facile sonochemical method and used to decontaminate emerging contaminants. Due to the stronger D–A interactions than COF-DT, the exciton binding energy was lower for COF-DBT, facilitating the intermolecular charge transfer process. The degradation kinetics of tetracycline (model contaminant) by COF-DBT (k = (12.21 ± 1.29) × 10–2 min–1) was higher than that by COF-DT (k = (5.11 ± 0.59) × 10–2 min–1) under visible-light irradiation. COF-DBT could efficiently photodegrade tetracycline under complex water chemistry conditions and four real water samples. Moreover, six other emerging contaminants, both Gram-negative and Gram-positive strains, could also be effectively eliminated by COF-DBT. High tetracycline degradation performance achieved in a continuous-flow system and in five reused cycles in both laboratory and outdoor experiments with sunlight irradiation showed the stability and the potential for the practical application of COF-DBT.
Liu F, Zhou P, Hou Y, Tan H, Liang Y, Liang J, Zhang Q, Guo S, Tong M, Ni J. Covalent organic frameworks for direct photosynthesis of hydrogen peroxide from water, air and sunlight. Nature Communications [Internet]. 2023;14:4344. 访问链接Abstract
Solar-driven photosynthesis is a sustainable process for the production of hydrogen peroxide, the efficiency of which is plagued by side reactions. Metal-free covalent organic frameworks (COFs) that can form suitable intermediates and inhibit side reactions show great promise to photo-synthesize H2O2. However, the insufficient formation and separation/transfer of photogenerated charges in such materials restricts the efficiency of H2O2 production. Herein, we provide a strategy for the design of donor-acceptor COFs to greatly boost H2O2 photosynthesis. We demonstrate that the optimal intramolecular polarity of COFs, achieved by using suitable amounts of phenyl groups as electron donors, can maximize the free charge generation, which leads to high H2O2 yield rates (605 μmol g−1 h−1) from water, oxygen and visible light without sacrificial agents. Combining in-situ characterization with computational calculations, we describe how the triazine N-sites with optimal N 2p states play a crucial role in H2O activation and selective oxidation into H2O2. We further experimentally demonstrate that H2O2 can be efficiently produced in tap, river or sea water with natural sunlight and air for water decontamination.
Wang S, He L, Zhang M, Su X, Liu F, Chen Q, Yang J, Tong M. Effects of Antibiotic Resistance Genes and Antibiotics on the Transport and Deposition Behaviors of Bacteria in Porous Media. Environmental Science & Technology [Internet]. 2023;57:10426-10437. 访问链接Abstract
Antibiotics present in the natural environment would induce the generation of antibiotic-resistant bacteria (ARB), causing great environmental risks. The effects of antibiotic resistance genes (ARGs) and antibiotics on bacterial transport/deposition in porous media yet are unclear. By using E. coli without ARGs as antibiotic-susceptible bacteria (ASB) and their corresponding isogenic mutants with ARGs in plasmids as ARB, the effects of ARGs and antibiotics on bacterial transport in porous media were examined under different conditions (1–4 m/d flow rates and 5–100 mM NaCl solutions). The transport behaviors of ARB were comparable with those of ASB under antibiotic-free conditions, indicating that ARGs present within cells had negligible influence on bacterial transport in antibiotic-free solutions. Interestingly, antibiotics (5–1000 μg/L gentamicin) present in solutions increased the transport of both ARB and ASB with more significant enhancement for ASB. This changed bacterial transport induced by antibiotics held true in solution with humic acid, in river water and groundwater samples. Antibiotics enhanced the transport of ARB and ASB in porous media via different mechanisms (ARB: competition of deposition sites; ASB: enhanced motility and chemotaxis effects). Clearly, since ASB are likely to escape sites containing antibiotics, these locations are more likely to accumulate ARB and their environmental risks would increase.
Nie C, Hou Y, Liu F, Dong Q, Li Z, Han P, Tong M. Efficient peroxymonosulfate activation by magnetic MoS2@Fe3O4 for rapid degradation of free DNA bases and antibiotic resistance genes. Water Research [Internet]. 2023;239:120026. 访问链接Abstract
Antibiotic resistance genes (ARGs) have become as emerging contaminant with great concerns worldwide due to their threats to human health. It is thus urgent to develop techniques to degrade ARGs in water. In this study, MoS2@Fe3O4 (MF) particles were fabricated and used to activate peroxymonosulfate (PMS) for the degradation of four types of free DNA bases (T, A, C, and G, major components of ARGs) and ARGs. We found that MF/PMS system could effectively degrade all four DNA bases (T within 10 min, A within 30 min, C within 5 min, and G within 5 min) in very short time. During the reaction process, MF could activate PMS to form the reactive radicals such as ·OH, SO4·−, O2·−, and 1O2, contributing to the degradation of DNA bases. Due to the low adsorption energy, high charge transfer, and great capability for PMS cleavage, MF exhibited excellent PMS adsorption and activation performances. MoS2 in MF could enhance the cycle of Fe(III)/Fe(II), improving the catalytic performance. Excellent catalytic performances of MF/PMS system were achieved in complex water matrix (including different solution pH, coexisting of anions and natural organic matter) as well as in real water samples (including tap water, river water, sea water, and sewage) especially under high salinity conditions due to the generation of Cl· radicals and HClO species. MF/PMS system could also efficiently degrade ARGs (chromosomal kanR and plasmid gmrA) and DNA extracted from antibiotic resistant bacteria (ARB) in super-short time. Moreover, complete disinfection of two types of model ARB (E. coli K-12 MG 1655 and E. coli S17–1) could also be achieved in MF/PMS system. The high degradation performances of MF/PMS system achieved in the reused experiments and the 14-day continuous flow reactor experiments indicated the stability of MF particles. Due to the magnetic property, it would be convenient to separate MF particles from water after use via using magnet, facilitating their reuse of MF and avoiding potential water contamination by catalysts. Overall, this study not only provided a deep insight on Fe/Mo-triggered PMS activation process, but also provided an effective and reliable approach for the treatment of DNA bases, ARGs, DNA, and ARB in water.
Influence of flagella and their property on the initial attachment behaviors of bacteria onto plastics
Zhang M, He L, Qin J, Wang S, Tong M. Influence of flagella and their property on the initial attachment behaviors of bacteria onto plastics. Water Research [Internet]. 2023;231:119656. 访问链接Abstract
Flagella and their property would influence the initial attachment of bacteria onto plastics, yet their impacts have not been investigated. In present study, four types of E. coli with or without flagella as well as with normal or sticky flagella were utilized to investigate the effects of flagella and their property on the initial attachment behaviors of bacteria onto six types of plastics in freshwater systems. We found that E. coli with flagella exhibited better initial attachment performance onto all six types of plastics than strain without flagella. Flagella could help bacteria swim near to plastics, pierce the energy barrier, and subsequently attach onto plastics. With stronger adhesive force, sticky flagella could further facilitate bacterial attachment onto plastics. Moreover, flagella especially sticky flagella could help bacteria form more rigid attachment layer on plastics. Even with humic acid in suspensions or in river water, flagellar E. coli showed greater attachment onto plastics than E. coli without flagella. Humic acid might adsorb onto sticky flagella and thus decreased the attachment of bacteria with sticky flagella onto plastics. Obviously, flagella as well as their property would impact the initial attachment of bacteria onto plastics and the subsequent formation of plastisphere in freshwater.
Periodate activation by pyrite for the disinfection of antibiotic-resistant bacteria: Performance and mechanisms
Liu F, Hou Y, Wang S, Li Z, Zhang B, Tong M. Periodate activation by pyrite for the disinfection of antibiotic-resistant bacteria: Performance and mechanisms. Water Research [Internet]. 2023;230:119508. 访问链接Abstract
The propagation of antibiotic-resistant bacteria (ARB) greatly endangers the ecological safety and human health. This study employed pyrite (FeS2, naturally abundant mineral) for periodate (PI) activation to disinfect ARB. FeS2/PI system could disinfect 1 × 107 CFU mL−1 of kanamycin-resistant E.coli below the limit of detection in 20 min. Efficient ARB inactivation performance was achieved in pH from 3 to 9, ionic strength from 0 to 300 mM, with HA (0.1–10 mg L−1) in suspension, and in real water samples including tap water, river water and sewage. FeS2/PI system could also efficiently disinfect gentamycin-resistant E.coli and Gram-positive B. subtilis. The generated reactive species including Fe(IV), ·O2– and ·OH would attack cell membrane and overwhelmed intracellular defense system. The intracellular kanamycin resistance genes in cells would be released and then degraded in FeS2/PI system. PI preferred to be adsorbed on Fe site of FeS2 (with lower adsorption energy, more occupancy of bonding state and stronger bonding strength). The subsequent transfer of electron cloud from Fe site to PI would cleave IO bond to generate reactive species. Moreover, FeS2/PI system could also combine with sand filtration system to efficiently capture and disinfect ARB. Therefore, FeS2/PI system is a promising approach to inactivate ARB in different scenarios.
2022
Thiadiazole-Based Covalent Organic Frameworks with a Donor–Acceptor Structure: Modulating Intermolecular Charge Transfer for Efficient Photocatalytic Degradation of Typical Emerging Contaminants
Hou Y, Liu F, Zhang B, Tong M. Thiadiazole-Based Covalent Organic Frameworks with a Donor–Acceptor Structure: Modulating Intermolecular Charge Transfer for Efficient Photocatalytic Degradation of Typical Emerging Contaminants. Environmental Science & Technology [Internet]. 2022;56(22):16303-16314. 访问链接Abstract
As novel metal-free photocatalysts, covalent organic frameworks (COFs) have great potential to decontaminate pollutants in water. Fast charge recombination in COFs yet inhibits their photocatalytic performance. We found that the intramolecular charge transfer within COFs could be modulated via constructing a donor–acceptor (D–A) structure, leading to the improved photocatalytic performance of COFs toward pollutant degradation. By integrating electron donor units (1,3,4-thiadiazole or 1,2,4-thiadiazole ring) and electron acceptor units (quinone), two COFs (COF-TD1 and COF-TD2) with robust D–A characteristics were fabricated as visible-light-driven photocatalysts to decontaminate paracetamol. With the readily excited electrons in 1,3,4-thiadiazole rings, COF-TD1 exhibited efficient electron–hole separation through a push–pull electronic effect, resulting in superior paracetamol photodegradation performance (>98% degradation in 60 min) than COF-TD2 (∼60% degradation within 120 min). COF-TD1 could efficiently photodegrade paracetamol in complicated water matrices even in river water, lake water, and sewage wastewater. Diclofenac, bisphenol A, naproxen, and tetracycline hydrochloride were also effectively degraded by COF-TD1. Efficient photodegradation of paracetamol in a scaled-up reactor could be achieved either by COF-TD1 in a powder form or that immobilized onto a glass slide (to further ease recovery and reuse) under natural sunlight irradiation. Overall, this study provided an effective strategy for designing excellent COF-based photocatalysts to degrade emerging contaminants.
Addition of biochar as thin preamble layer into sand filtration columns could improve the microplastics removal from water
Hsieh L, He L, Zhang M, Lv W, Yang K, Tong M. Addition of biochar as thin preamble layer into sand filtration columns could improve the microplastics removal from water. Water Research [Internet]. 2022;221:118783. 访问链接Abstract
The release of microplastics (MPs) especially those with sizes less than 10 μm from effluent of wastewater treatment plants (WWTPs) is one of the major sources of plastics into aquatic environment. To reduce the discharge of MPs into environment, it is essential to further enhance their removal efficiencies in WWTPs. In present study, to boost the removal performance of MPs in sand filtration systems (units that commonly employed in WWTPs to remove colloidal pollutants), six types of biochar fabricated from three raw biomass materials (i.e. lignin, cellulose, and woodchips) at two pyrolysis temperatures (400 °C and 700 °C) was respectively amended into sand columns as thin permeable layer. We found that adding all six types of biochar into sand columns as thin permeable layer could greatly improve the retention of MPs with the diameter of 1 μm under either slow (4 m/d) or fast flow rates (160 m/d) due to the high adsorption capability of biochar. Woodchip-derived biochar exhibited the highest MPs retention performance, which was followed by cellulose-derived biochar and then lignin-derived biochar. Moreover, for biochar derived from three raw biomasses, increasing pyrolysis temperature could improve MPs retention performance. The direct observation of real-time plastics retention processes on different types of biochar via a visible flow chamber showed that woodchip-derived biochar especially that fabricated at 700 °C exhibited more MPs trapping processes relative to lignin and cellulose-derived biochar due to their more complex surface morphology. Thus, the highest MPs retention performance was achieved in sand columns with amendment by 1 wt% woodchip-derived biochar fabricated at 700 °C. More importantly, we found that for these modified sand filtration column systems, complete MPs removal could be achieved in real river water and actual sewage water, in multiple filtration cycles, longtime filtration process (100 pore volumes injection) as well as with interval flow conditions. Moreover, biochar could be regenerated and reused as thin permeable layer to effectively remove MPs. The results of this study clearly showed that biochar especially woodchip-derived biochar fabricated at 700 °C had the potential to immobilize MPs especially those with small sizes in WWTPs.
Freeze-thaw cycles induce diverse bacteria release behaviors from quartz sand columns with different water saturations
He L, Li M, Wu D, Guo J, Zhang M, Tong M. Freeze-thaw cycles induce diverse bacteria release behaviors from quartz sand columns with different water saturations. Water Research [Internet]. 2022;221:118683. 访问链接Abstract
Bacteria present in natural environment especially those in cold regions would experience freeze-thaw (FT) process during day-night and season turns. However, knowledge about the influence of FT on bacteria release behaviors in porous media was limited. In present study, the bacteria release behaviors from quartz sand columns without and with 1 and 3 FT treatment cycles under three water saturations (θ=100%, 90%, and 60%) were investigated. We found that for all three water saturated columns without FT treatment, negligible bacteria released from columns via background salt solution elution, while the subsequent release of bacteria from sand columns via low ionic strength (IS) solution elution decreased with decreasing column water saturations. More importantly, we found unlike the negligible bacteria release in columns without FT treatment, for columns with high saturations (θ=100% and 90%), FT treatment could promote bacteria release with background salt solution elution. Moreover, for high saturated columns, FT treatment would decrease subsequent bacteria release with low IS solution elution. This phenomenon was more obvious with increasing FT treatment cycles. In contrast, FT treatment had negligible influence on bacteria release from columns with lower saturation (θ=60%). The decreased bacterial sizes, the loss of bacterial flagella, as well as the change of local configuration of porous media (via changing water into ice and ice back into water) during the FT processes contributed to increased bacteria release via background salt solution elution from high saturated sand columns. While, the reduced amount of bacteria being retained at secondary energy minima drove to the subsequently decreased bacteria release via low IS solution elution. The results of this study clearly showed that for porous media with high saturations, FT cycles would increase the risk of bacteria detaching from porous media with flushing by the background solution.
Catalyst-Free Periodate Activation by Solar Irradiation for Bacterial Disinfection: Performance and Mechanisms
Liu F, Li Z, Dong Q, Nie C, Wang S, Zhang B, Han P, Tong M. Catalyst-Free Periodate Activation by Solar Irradiation for Bacterial Disinfection: Performance and Mechanisms. Environmental Science and Technology [Internet]. 2022;56(7):4413-4424. 访问链接Abstract
Periodate (PI)-based advanced oxidation process has recently attracted great attention in the water treatment processes. In this study, solar irradiation was used for PI activation to disinfect waterborne bacteria. The PI/solar irradiation system could inactivate Escherichia coli below the limit of detection (LOD, 10 CFU mL–1) with initial concentrations of 1 × 106, 1 × 107, and 1 × 108 CFU mL–1 within 20, 40, and 100 min, respectively. •O2– and •OH radicals contributed to the bacterial disinfection. These reactive radicals could attack and penetrate the cell membrane, thereby increasing the amount of intracellular reactive oxygen species and destroying the intracellular defense system. The damage of the cell membrane caused the leakage of intracellular K+ and DNA (that could be eventually degraded). Excellent bacterial disinfection performance in PI/solar irradiation systems was achieved in a wide range of solution pH (3–9), with coexisting humic acid (0.1–10 mg L–1) and broad solution ionic strengths (15–600 mM). The PI/solar irradiation system could also efficiently inactivate Gram-positive Bacillus subtilis. Moreover, PI activated by natural sunlight irradiation could inactivate 1 × 107 CFU mL–1 viable E. coli below the LOD in the river and sea waters with a working volume of 1 L in 40 and 50 min, respectively. Clearly, the PI/solar system could be potentially applied to disinfect bacteria in water.
Improved removal performance of Gram-negative and Gram-positive bacteria in sand filtration system with arginine modified biochar amendment
Zhang M, He L, Zhang X, Wang S, Zhang B, Hsieh L, Yang K, Tong M. Improved removal performance of Gram-negative and Gram-positive bacteria in sand filtration system with arginine modified biochar amendment. Water Research [Internet]. 2022;211:118006. 访问链接Abstract
Bacterial removal by sand filtration system is commonly inefficient due to the low bacterial adsorption capacity of sand. To improve the bacterial removal performance, biochar fabricated at different temperatures (400 °C, 550 °C and 700 °C) and arginine modified biochar were added into sand filtration columns as filter layers (0.5 and 1 wt%). Addition of biochar into sand columns could improve the removal efficiency for both Escherichia coli and Bacillus subtilis under both slow (4 m/day) and fast (240 m/day) filtration conditions. Bacterial removal efficiency in sand columns with the addition of biochar fabricated at 700 °C were higher than those fabricated at 400 °C and 550 °C due to its best bacterial adsorption capacity. Modification of biochar with arginine could further improve the bacterial removal performance. Specifically, complete bacterial removal (1.35 × 107 ± 10% cells/mL) could be achieved under both slow and fast filtration conditions in sand columns with 1 wt% arginine functionalized biochar amendment. The enhanced bacterial adsorption capacity mainly contributed to the increased bacterial capture performance in columns with addition of arginine-modified biochar. Bacteria more tightly bounded with arginine-modified biochar than bulk biochar. Moreover, complete bacterial removal with the copresence of 5 mg/L humic acid in suspensions was acquired in columns with addition of 1 wt% arginine-modified biochar. Efficient bacterial removal in actual river water, multiple filtration cycles as well as longtime injection duration (100 pore volumes injection) was also obtained. The results of this study demonstrated that arginine-modified biochar had great potential to treat water contaminated by pathogenic bacteria.
2021
Liu F, Ma Z, Deng Y, Wang M, Zhou P, Liu W, Guo S, Tong M, Ma D. Tunable Covalent Organic Frameworks with Different Heterocyclic Nitrogen Locations for Efficient Cr(VI) Reduction, Escherichia coli Disinfection, and Paracetamol Degradation under Visible-Light Irradiation. Environmental Science and Technology [Internet]. 2021;55(8):5371-5381. 访问链接Abstract
Covalent organic frameworks (COFs) have great application potentials in photocatalytic water treatment. By using p-phenylenediamine with different numbers and locations of heterocyclic nitrogen atoms as a precursor, five types of COFs with different nitrogen positions were synthesized. We found that Cr(VI) photoreduction,Escherichia coli inactivation, and paracetamol degradation by COFs were heterocyclic nitrogen location-dependent. Particularly, the photocatalytic performance for all three tested pollutants by five types of COFs followed the order of the best performance for COF-PDZ with two ortho position heterocyclic N atoms, medium for COF-PMD with two meta position heterocyclic N atoms, and COF-PZ with two para position heterocyclic N atoms, and COF-PD with a single heterocyclic N atom, the worst performance for COF-1 without a heterocyclic N atom. Compared to the other COFs, COF-PDZ contained improved quantum efficiency and thus enhanced generation of electrons. The lower energy barriers and larger energy gaps of COF-PDZ contributed to its improved quantum efficiencies. The stronger affinity to Cr(VI) with lower adsorption energy of COF-PDZ also contributed to its excellent Cr(VI) reduction performance. By transferring into a more stable keto form, COF-PDZ showed great stability through five regeneration and reuse cycles. Overall, this study provided an insight into the synthesis of high-performance structure-dependent COF-based photocatalysts. © 2021 American Chemical Society.
Zhang M, He L, Jin X, Bai F, Tong M, Ni J. Flagella and Their Properties Affect the Transport and Deposition Behaviors of Escherichia coli in Quartz Sand. Environmental Science and Technology [Internet]. 2021;55(8):4964-4973. 访问链接Abstract
The effects of flagella and their properties on bacterial transport and deposition behaviors were examined by using four types of Escherichia coli (E. coli) with or without flagella, as well as with normal or sticky flagella. Packed column, quartz crystal microbalance with dissipation, visible parallel-plate flow chamber system, and visible flow chamber packed with porous media system were employed to investigate the deposition mechanisms of bacteria with different properties of flagella. We found that the presence of flagella favored E. coli deposition onto quartz sand/silica surfaces. Moreover, by changing the porous media porosity and directly observing the bacterial deposition process, local sites with high roughness, narrow flow channels, and grain-to-grain contacts were found to be the major sites for bacterial deposition. Particularly, flagella could help bacteria swim near and then deposit at these sites. In addition, we found that due to the stronger adhesive forces, sticky flagella could further enhance bacterial deposition onto quartz sand/silica surfaces. Elution experiments indicated that flagella could help bacteria attach onto sand surfaces more irreversibly. Clearly, flagella and their properties would have obvious impacts on the transport/deposition behaviors of bacteria in porous media. © 2021 American Chemical Society.
2020
He L, Rong H, Wu D, Li M, Wang C, Tong M. Influence of biofilm on the transport and deposition behaviors of nano- and micro-plastic particles in quartz sand. Water Research [Internet]. 2020;178. 访问链接Abstract
Biofilm, community of bacteria ubiquitously present in natural environment, may interact with plastic particles and affect the transport of plastic particles in environment. The significance of biofilm (Escherichia coli) on the transport and deposition behaviors of three different sized plastic particles (0.02 μm NPs, 0.2 μm MP and 2 μm MP) were examined under both 10 mM and 50 mM NaCl solutions by comparing the breakthrough curves and retained profiles of plastic particles in bare sand versus those in biofilm-coated sand. Regardless of ionic strengths, the presence of biofilm increases the deposition of all three sized plastic particles in porous media. Via employing X-ray microtomography imaging (XMT) and Scanning electron microscope (SEM), we find that the presence of biofilm could narrow the flow path especially near to the inlet of the column and increase the surface roughness of porous media (by decreasing DLVO repulsive interaction), which contributes to the enhanced the deposition of plastic particles. Extracellular polymeric substances (EPS) present on the biofilm are found to contribute to the enhanced deposition of plastic particles. Packed column experiments, quartz crystal microbalance with dissipation (QCM-D) as well as parallel plate flow chamber experiments all show that three major components of EPS, proteins, polysaccharide, and humic substances all contribute to the enhanced deposition of plastic particles. O–H and N–H groups present on cell surfaces are highly likely to form hydrogen bond with plastic particles and increase the deposition plastic particles. Elution experiments show that decreasing solution ionic strength could release small portion of plastic particles from both bare and biofilm-coated sand columns especially from the segments near to the column inlet (with slighter lower percentage from biofilm-coated columns based on the total mass of retained plastics). In contrast, increasing flow rate does not obviously detach the plastic particles that already deposited onto porous media. The results of this study clearly show that the presence of biofilm in natural environment could enhance the deposition and decrease the transport of plastic particles. © 2020
Tong M, He L, Rong H, Li M, Kim H. Transport behaviors of plastic particles in saturated quartz sand without and with biochar/Fe3O4-biochar amendment. Water Research [Internet]. 2020;169. 访问链接Abstract
As an environmentally friendly material, biochar has been widely used to remediate soil/water contaminants such as heavy metals and organic pollutants. The addition of biochar or modified biochar to porous media might affect the retention of plastic particles and thus influence their fate in natural environment. In this study, both biochar and magnetic biochar (Fe3O4-biochar) were synthesized via a facile precipitation method at room temperature. To determine the significance of biochar and Fe3O4-biochar amendment on the transport and deposition behaviors of plastic particles, the breakthrough curves and retained profiles of three different sized plastic particles (0.02 μm nano-plastic particles, and 0.2 μm and 2 μm micro-plastic particles) in quartz sand were compared with those obtained in quartz sand either with biochar or Fe3O4-biochar amendment in both 5 mM and 25 mM NaCl solutions. The results show that for all three different sized plastic particles under both examined solution conditions, the addition of biochar and Fe3O4-biochar in quartz sand decreases the transport and increases the retention of plastic particles in porous media. Fe3O4-biochar more effectively inhibits the transport of plastic particles than biochar. We found that the addition of biochar/Fe3O4-biochar could change the suspension property and increase the adsorption capacity of porous media (due to the increase of porous media surface roughness and negatively decrease the zeta potentials of porous media), contributing to the enhanced deposition of plastic particles. Moreover, we found that negligible amount of biochar and Fe3O4-biochar (<1%) were released from the columns following the plastic particle transport when the columns were eluted with very low ionic strength solution at high flow rate (to simulate a sudden rainstorm). Similarly, small amount of plastic particles were detached from the porous media under this extreme condition (16.5% for quartz sand, 14.6% for quartz sand with biochar amendment, and 7.5% for quartz sand with Fe3O4-biochar amendment). We found that over 74% of the Fe3O4-biochar can be recovered from the porous media after the retention of plastic particles by using a magnet and 87% plastic particles could be desorbed from Fe3O4-biochar by dispersing the Fe3O4-biochar into 10 mM NaOH solution. In addition, we found that the amendment of unsaturated porous media with biochar/Fe3O4-biochar also decreased the transport of plastic particles. When biochar/Fe3O4-biochar were added into porous media as one layer of permeable barrier near to column inlet, the decreased transport of plastic particles could be also obtained. The results of this study indicate that magnetic biochar can be potentially applied to immobilize plastic particles in terrestrial ecosystems such as in soil or groundwater. © 2019 Elsevier Ltd
2019
He L, Wu D, Tong M. The influence of different charged poly (amido amine) dendrimer on the transport and deposition of bacteria in porous media. Water Research [Internet]. 2019;161:364-371. 访问链接Abstract
The influence of dendrimer on the bacterial transport and deposition behaviors in saturated porous media (quartz sand) was investigated in both NaCl (10 and 25 mM) and CaCl2 solutions (1.2 and 5 mM). 3.5G and 4G poly (amido amine) (PAMAM) dendrimer was employed as negatively and positively charged dendrimer, respectively. Three dendrimer concentrations (10 μg/L, 1 and 10 mg/L) were considered in present study. We found that regardless of the solution chemistry (ionic strength and ion types) and dendrimer concentrations, the presence of negatively charged PAMAM 3.5G in suspensions enhanced bacterial transport and inhibited their deposition in quartz sand; while the presence of positive charged PAMAM 4G yet induced the opposite effects (decreased bacterial transport and increased their deposition in quartz sand). The increased repulsive force between cell and quartz sand due to the adsorption of PAMAM 3.5G onto both cell and sand surfaces, the competition deposition sites as well as the steric repulsion via the suspended PAMAM 3.5G drove to the increased bacterial transport with PAMAM 3.5G copresent in suspensions in quartz sand. While the reduced repulsive force between cell and quartz sand induced by the chemical heterogeneity on both cell and sand surfaces (due to the adsorption of positive charged PAMAM 4G) increased bacterial retention in quartz sand with copresence of PAMAM 4G (10 μg/L and 1 mg/L) in suspensions. Steric repulsion due to the presence of great amount of suspended PAMAM 4G yet lead to the enhanced bacterial transport with furthering increasing PAMAM 4G to 10 mg/L relative to the lower PAMAM 4G concentration. © 2019
Li M, He L, Zhang M, Liu X, Tong M, Kim H. Cotransport and Deposition of Iron Oxides with Different-Sized Plastic Particles in Saturated Quartz Sand. Environmental Science and Technology [Internet]. 2019;53(7):3547-3557. 访问链接Abstract
The present study was designed to investigate the cotransport and deposition of different-sized plastic particle from nano- (0.02 μm) to micrometer-scale (0.2 and 2 μm) with goethite and hematite (two types of representative iron oxides abundant in natural environment) in porous media at both low (5 mM) and high ionic strength (25 mM) in NaCl solutions. We found that through different mechanisms (i.e., modification of surface properties of iron oxides, steric repulsion, or alteration in deposition sites on quartz sand), different-sized plastic particles induced different effects on the transport and deposition behaviors of iron oxides in quartz sand. Likewise, via different mechanisms such as change of surface properties or alteration in deposition sites on quartz sand, different transport behaviors for different sized plastic particles induced by the copresence of iron oxides were also observed. The results of this study suggested that cotransport of iron oxides and plastic particles in porous media is far more complex than those of individual colloid transport. Since both plastic particles and iron oxides are ubiquitous presence in natural environment, it is expected that they would interact with each other and thus alter the surface properties, leading to the change of transport behaviors in porous media. Copyright © 2019 American Chemical Society.
2018
He L, Wu D, Rong H, Li M, Tong M, Kim H. Influence of Nano- and Microplastic Particles on the Transport and Deposition Behaviors of Bacteria in Quartz Sand. Environmental Science and Technology [Internet]. 2018;52:11555-11563. 访问链接Abstract
Plastic particles are widely present in the natural environment and are highly likely to interact with bacteria (the ubiquitous microbes in the natural environment), which might affect the transport and deposition of bacteria in porous media. In this study, the significance of plastic particles from nanoscale to micrometer-scale (0.02-2 μm) on the transport and deposition behaviors of bacteria (Escherichia coli) in quartz sand was examined under environmentally relevant conditions in both NaCl and CaCl2 solutions at pH 6. The results showed that the presence of different-sized plastic particles did not affect bacterial transport behaviors at low ionic strength (10 mM NaCl and 1 mM CaCl2), whereas, at high ionic strength conditions (50 mM NaCl and 5 mM in CaCl2), plastic particles increased bacterial transport in quartz sand. At low ionic strength conditions, the mobility of both plastic particles and bacteria was high, which might drive the negligible effects of plastic particles on bacterial transport behaviors. The mechanisms driving the enhanced cell transport at high ionic strength were different for different-sized plastic particles. Specifically, for 0.02 μm nanoplastic particles, the adsorption of plastic particles onto cell surfaces and the repel effect induced by suspended plastic particles contributed to the increased cell transport. As for 0.2 μm microplastics (MPs), the suspended plastic particles induced repel effect contributed to the increased cell transport, whereas, for 2 μm MPs, the competition deposition sites by the plastic particles were the contributor to the increased cell transport. © 2018 American Chemical Society.
Liang J, Liu F, Li M, Liu W, Tong M. Facile synthesis of magnetic Fe3O4@BiOI@AgI for water decontamination with visible light irradiation: Different mechanisms for different organic pollutants degradation and bacterial disinfection. Water Research [Internet]. 2018;137:120-129. 访问链接Abstract
Magnetic Fe3O4@BiOI@AgI (FBA) spheres were synthesized through a multi-step process. The fabricated photocatalysts were characterized by different techniques. To testify the visible light driven photocatalytic activity of FBA, Rhodamine B and Bisphenol A were chosen as model common and emerging organic contaminants, respectively. While, gram-negative strain Escherichia coli was selected as model waterborne bacteria. The results showed that under visible light irradiation, FBA contained strong photocatalytic degradation capacity towards both RhB and BPA. Moreover, FBA was also found to exhibit excellent disinfection activity towards E. coli. The photocatalytic mechanisms for different pollutants by FBA were determined and found to vary for different pollutants. Specifically, scavenger experiments, degradation intermediates determination, as well as theoretical density functional theory (DFT) analysis showed that RhB and BPA were degraded via photosensitization (dominated by e- and ·O2−) and direct photocatalytic oxidation (contributed by h+, e- and ·O2−), respectively. Whereas, E. coli cells yet were found to be inactivated by the generation of e- and ·O2− rather than by the released Ag+. Since it contained superparamagnetic property, FBA could be easily separated from the reaction suspension after use. Due to the excellent photo stability, FBA exhibited strong photocatalytic activity in the fourth reused recycle. Therefore, FBA could serve as a promising alternative for water purification. © 2018 Elsevier Ltd

Pages