科研成果 by Year: 2024

2024
Oxygen vacancy-dependent synergistic disinfection of antibiotic-resistant bacteria by BiOBr nanoflower induced H2O2 activation
Li Z, Hou Y, Shen Y, Nie C, Zhang X, Liu F, Tong M. Oxygen vacancy-dependent synergistic disinfection of antibiotic-resistant bacteria by BiOBr nanoflower induced H2O2 activation. Water Research [Internet]. 2024;267:122524. 访问链接Abstract
Antibiotic-resistant bacteria (ARB) and antibiotic-resistant genes (ARGs) pose a significant threat to both ecosystems and human health. Owing to the excellent catalytic activity, eco-safety, and convenience for defect engineering, BiOBr with oxygen vacancies (OVs) of different density thus were fabricated and employed to activate H2O2 for ARB disinfection/ARGs degradation in present study. We found that BiOBr with OVs of appropriate density induced via ethanol reduction (BOB-E) could effectively activate H2O2, achieving excellent ARB disinfection and ARGs degradation efficiency. Moreover, this disinfection system exhibited remarkable tolerance to complex water environments and actual water conditions. In-situ characterization and theoretical calculations revealed that OVs in BOB-E could effectively capture and activate aqueous H2O2 into HO· and O2·−. The generated reactive oxygen species combined with electron transfer could damage the cell membrane system and degrade genetic materials of ARB, leading to effective disinfection. The impressive reusability, high performance achieved in two immobilized reaction systems (packed column and baffled ditch reactor), excellent degradation of emerging organic pollutants supported the feasibility of BOB-E/H2O2 system towards practical water decontamination. Overall, this study not only provides insights into fabrication of bismuth-based catalysts for efficient ARB disinfection/ARGs degradation via OVs regulation, but also paves the way for their practical applications.
Effects of Mono- and Multicomponent Nonaqueous-Phase Liquid on the Migration and Retention of Pollutant-degrading Bacteria in Porous Media
He L, Li O, Qin J, Chen C, Li Z, Tong M. Effects of Mono- and Multicomponent Nonaqueous-Phase Liquid on the Migration and Retention of Pollutant-degrading Bacteria in Porous Media. Water Research [Internet]. 2024:122673. 访问链接Abstract
The successful implementation of in-situ bioremediation of nonaqueous-phase liquid (NAPL) contamination in soil-groundwater systems is greatly influenced by the migration performance of NAPL-degrading bacteria. However, the impact and mechanisms of NAPL on the migration/retention of pollutant-degrading bacteria remain unclear. This study investigated the migration/retention performance of A. lwoffii U1091, a strain capable of degrading diesel while producing surfactants, in porous media without and with the presence of mono- and multicomponent NAPL (n-dodecane and diesel) under environmentally relevant conditions. The results showed that under all examined conditions (5 and 50 mM NaCl solution at flow rates of 4 and 8 m/d), the presence of n-dodecane/diesel in porous media could reduce the migration and enhance retention of A. lwoffii in quartz sand columns. Moreover, comparing with mutlicomponent NAPLs of n-dodecane, the monocomponent NAPLs (diesel) exhibited a greater reduction effect on the retention of A. lwoffii in porous media. Through systemically investigating the potential mechanisms via tracer experiment, visible chamber experiment, and theoretical calculation, we found that the reduction in porosity, repulsive forces and movement speeds, the presence of stagnant flow zones in porous media, particularly the biosurfactants generated by A. lwoffii contributed to the enhanced retention of bacteria in NAPL-contaminated porous media. Moreover, owing to presence of the greater amount of hydrophilic components in diesel than in n-dodecane, the available binding sites for the adsorption of bacteria were lower in diesel, resulting in the slightly decreased retention of A. lwoffii in porous media containing diesel than n-dodecane. This study demonstrated that comparing with porous media without NAPL contamination, the retention of strain capable of degrading NAPL in porous media with NAPL contamination was enhanced, beneficial for the subsequent biodegradation of NAPL.
Rigid covalent organic frameworks with thiazole linkage to boost oxygen activation for photocatalytic water purification
Hou Y, Zhou P, Liu F, Tong K, Lu Y, Li Z, Liang J, Tong M. Rigid covalent organic frameworks with thiazole linkage to boost oxygen activation for photocatalytic water purification. Nature Communications [Internet]. 2024;15:7350. 访问链接Abstract
Owing to their capability to produce reactive oxygen species (ROS) under solar irradiation, covalent organic frameworks (COFs) with pre-designable structure and unique architectures show great potentials for water purification. However, the sluggish charge separation, inefficient oxygen activation and poor structure stability in COFs restrict their practical applications to decontaminate water. Herein, via a facile one-pot synthetic strategy, we show the direct conversion of reversible imine linkage into rigid thiazole linkage can adjust the $π$-conjugation and local charge polarization of skeleton to boost the exciton dissociation on COFs. The rigid linkage can also improve the robustness of skeleton and the stability of COFs during the consecutive utilization process. More importantly, the thiazole linkage in COFs with optimal C 2p states (COF-S) effectively increases the activities of neighboring benzene unit to directly modulate the O2-adsorption energy barrier and improve the ROS production efficiency, resulting in the excellent photocatalytic degradation efficiency of seven toxic emerging contaminants (e.g. degrading \textasciitilde99% of 5þinspace}mgþinspace}L−1 paracetamol in only 7þinspace}min) and effective bacterial/algal inactivation performance. Besides, COF-S can be immobilized in continuous-flow reactor and in enlarged reactor to efficiently eliminate pollutants under natural sunlight irradiation, demonstrating the feasibility for practical application.
Starvation Process Would Induce Different Bacterial Mobilities and Attachment Performances in Porous Media without and with Nutrients on Surfaces
Qin J, He L, Su X, Wang S, Tong M. Starvation Process Would Induce Different Bacterial Mobilities and Attachment Performances in Porous Media without and with Nutrients on Surfaces. Environmental Science & Technology [Internet]. 2024;58(31):13879-13889. 访问链接Abstract
The influence and mechanisms of starvation on the bacterial mobile performance in porous media with different nutrition conditions are not well understood. The present study systematically investigated the impacts of starvation on the mobility and attachment of both Gram-negative and Gram-positive strains in porous media without and with nutrients on surfaces in both simulated and real water samples. We found that regardless of strain types and water chemistries, starvation would greatly inhibit bacterial attachment onto bare porous media without nutrients yet could significantly enhance cell attachment onto porous media with nutrients on their surfaces. The mechanisms driving the opposite transport behaviors induced by starvation in porous media without and with nutrients were totally different. We found that the starvation process decreased cell motility and increased repulsive force between bacteria and porous media via decreasing cell sizes and zeta potentials, reducing EPS secretion and cell hydrophobicity, thus increasing transport/inhibiting attachment of bacteria in porous media without nutrients on sand surfaces. In contrast, through strengthening the positive chemotactic response of bacteria to nutrients, the starvation process greatly enhanced bacterial attachment onto porous media with nutrients on sand surfaces. Clearly, via modification of the nutrient conditions in porous media, the mobility/attachment performance of bacteria could be regulated.
Simultaneous inactivation of Microcystis aeruginosa and degradation of microcystin-LR in water by activation of periodate with sunlight
Zhang X, Zhang B, Shen Y, Li Z, Hou Y, Liu F, Tong M. Simultaneous inactivation of Microcystis aeruginosa and degradation of microcystin-LR in water by activation of periodate with sunlight. Water Research [Internet]. 2024;260:121948. 访问链接Abstract
Harmful algal blooms pose tremendous threats to ecological safety and human health. In this study, simulated solar light (SSL) irradiation was used to activate periodate (PI) for the inactivation of Microcystis aeruginosa and degradation of microcystin-LR (MC-LR). We found that PI-SSL system could effectively inactivate 5 × 106 cells·mL−1 algal cells below the limit of detection within 180 min. ·OH and iodine (IO3· and IO4·) radicals generated in PI-SSL system could rupture cell membranes, releasing intracellular substances including MC-LR into the reaction system. However, the released MC-LR could be degraded into non-toxic small molecules via hydroxylation and ring cleavage processes in PI-SSL system, reducing their environmental risks. High algae inactivation performance of PI-SSL system in solution with a wide pH range (3–9), with the coexisting anions (Cl−, NO3− and SO42−) and the copresence of natural organic matters (humic acid and fulvic acid), real water (lake water and river water), as well as in continuous-flow reactor (14 h) were also achieved. In addition, under natural sunlight irradiation, effective algae inactivation could also be achieved in an enlarged reactor (1 L). Overall, our study showed that PI-SSL system could avoid the inference by the background substances and could be employed as a feasible technique to treat algal bloom water.
Efficient Photosynthesis of Hydrogen Peroxide by Cyano-Containing Covalent Organic Frameworks from Water, Air and Sunlight
Hou Y, Zhou P, Liu F, Lu Y, Tan H, Li Z, Tong M, Ni J. Efficient Photosynthesis of Hydrogen Peroxide by Cyano-Containing Covalent Organic Frameworks from Water, Air and Sunlight. Angewandte Chemie International Edition [Internet]. 2024;63:e202318562. 访问链接Abstract
Abstract The insufficient exciton (e−-h+ pair) separation/transfer and sluggish two-electron water oxidation are two main factors limiting the H2O2 photosynthetic efficiency of covalent organic frameworks (COFs) photocatalysts. Herein, we present an alternative strategy to simultaneously facilitate exciton separation/transfer and reduce the energy barrier of two-electron water oxidation in COFs via a dicyano functionalization. The in situ characterization and theoretical calculations reveal that the dicyano functionalization improves the amount of charge transfer channels between donor and acceptor units from two in COF-0CN without cyano functionalization to three in COF-1CN with mono-cyano functionalization and four in COF-2CN with dicyano functionalization, leading to the highest separation/transfer efficiency in COF-2CN. More importantly, the dicyano group activates the neighbouring C atom to produce the key *OH intermediate for effectively reducing the energy barrier of rate-determining two-electron water oxidation in H2O2 photosynthesis. The simultaneously enhanced exciton separation/transfer and two-electron water oxidation in COF-2CN result in high H2O2 yield (1601 μmol g−1 h−1) from water and oxygen without using sacrificial reagent under visible-light irradiation. COF-2CN can effectively yield H2O2 in water with wide pH range, in different real water samples, in scaled-up reactor under natural sunlight irradiation, and in continuous-flow reactor for consecutively producing H2O2 solution for water decontamination.