科研成果 by Type: 期刊论文

2020
Gao Z-C, Du* C-H, Li F-H, Pan S, Zhang Z-W, Liu* P-K. Strong Dispersive Propagation of Terahertz Wave: Time‐Domain Self‐Consistent Modeling of Metallic Wall Losses. Advanced Theory and Simulations. 2020;3(3):1900218.
Luo L, Pan S, Du* C-H, Huang M-G, Liu* P-K. Terahertz ultralow voltage gyrotron with upstream output. IEEE Trans. Plasma Science. 2020;48(4):1195-1201.
2019
Pan S, Du* C-H, Gao Z-C, Li F-H, Bian H-Q, Liu* P-K. Investigation of high-order mode excitation in a terahertz second-harmonic gyro-BWO. Physics of Plasmas [Internet]. 2019;26(033114). 访问链接Abstract
As to gyrotron oscillators, operation at high harmonics is an effective solution to decrease the required magnetic field strengths and improve radiation frequencies towards the terahertz (THz) band. Unfortunately, significant challenges related to a harmonic gyrotron include weak interaction strengths and serious mode competition conditions. In this paper, we report on the excitation strategy and stable-state property of a THz second-harmonic (SH) gyro-BWO with the TE24,3 mode. Such an extremely high-order mode interaction system is inherently capable of providing high power capacity and advanced mode selectivity. A competition-free parameter space is created by increasing the Doppler sensitivity of one fundamental-harmonic (FH) competing mode at low magnetic fields and simultaneously suppressing the Q factor of another FH competing mode in the near-cutoff region at high magnetic fields. The SH quasi-whispering-gallery mode can be stimulated with a medium output power at around 0.5 THz during the FH mode switching process. This work contributes to further exploiting high frequency steps in the high-order multi-mode frequency-tuning gyro-BWO.
Pan S, Du* C-H, Bian H-Q, Gao Z-C, Li F-H, Liu* P-K. Terahertz broadband whispering-gallery mode Gyrotron backward-wave oscillator. IEEE Trans. Electron Devices [Internet]. 2019;66(5):2389-2395. 访问链接Abstract
Conventional gyrotron backward-wave oscillators (gyro-BWOs) operate in a low-order mode, e.g., TE 0,1 mode. As the operating frequency extends to the terahertz (THz) band, the transverse size of low-order mode cavity shrinks, and the power capability is reduced, consequently. A solution to adopt an overmoded interaction cavity with a significantly enlarged index of the operating mode is valid on the condition that the challenging problem of mode competition can be controlled during the broadband frequency tuning. In this paper, a high-order whispering-gallery mode (WGM) THz gyro-BWO with a cathode-end output circuit is investigated. A segment-tapered circuit is applied to suppress the Q factors of competing modes and to obtain a the competition-free stable start-oscillation scenario. The theoretical result predicts that the effective frequency tuning range continuously covers between 252.3 and 260 GHz when the B-field is changed from 9.41 to 9.96 T. Our studies are beneficial to the development of high-performance sources for THz biomedical and material science applications.
Zhu J-F, Du* C-H, Li F-H, Bao L-Y, Liu P-K. Free-electron-driven multi-frequency terahertz radiation on a super-grating structure. IEEE Access. 2019;7:181184 - 181190.
Zhu J-F, Du* C-H, Bao L-Y, Liu* P-K. Regenerated amplification of terahertz spoof surface plasmon radiation. New Journal of Physics. 2019;21(033021).
Zhu J-F, Du* C-H, Huang T-J, Bao L-Y, Liu P-K. Free-electron-driven beam-scanning terahertz radiation. Optics Express. 2019;27(18):26192-26202.
2018
Du C-H, Pan S, Bian H-Q, Liu P-K. Time-domain multi-mode analysis of a THz gyro-TWT amplifier. IEEE Trans. Electron Devices [Internet]. 2018;65(4):1550-1557. 访问链接Abstract
High-order mode employed as the operating mode of a terahertz (THz) gyrotron traveling-wave tube (gyro-TWT) amplifier shows strong dispersion, which deteriorates the device performance in amplifying picosecond THz pulses. Theoretical investigation of a THz gyro-TWT amplifier with a lossy cylindrical circuit is carried out to study the problems, such as lossy structure design, parameters selection, frequency-domain performance, and time-domain dynamics. The robust high growth rate low-kz amplification and the broadband high-kz amplification are two preferred operation conditions. The revealed characteristics are also useful for developing THz gyro-TWTs with other kinds of over-moded circuits.
Luo L, Du* C-H, Qi X-B, Li Z-D, Pan S, Huang M-G, Liu* P-K. Controllable thermal-frequency tuning of a THz gyrotron. IEEE Trans. Electron Devices [Internet]. 2018;65(2):695-703. 访问链接Abstract
Gyrotron performance is sensitive to cavity structure parameters, and the cavity shape is temperature dependent due to thermal deformation induced by temperature rise from ohmic loss power on finite-conductivity cavity wall. Accordingly, this paper studies a frequency-tuning scheme for terahertz gyrotron by properly controlling the cavity thermal deformation. By combining gyrotron nonlinear theory and finite-element method software, controllable thermal-frequency-tuning capability of a continuous-wave 263-GHz gyrotron is systematically investigated, toward maintaining gyrotron operating under gyromonotron condition in frequency-tuning band, and achieving high efficiency in broadband frequency-tuning range. After studying cavity thermal distribution, structure deformation, and electron beam-wave interaction, an optimized cavity structure with transition sections on both ends is proposed. Simulation predicts that with the two-transition-section cavity, via additional thermal tuning, the continuous-frequency-tuning band is capable of reaching 1.75 GHz, which is 5 times of the initial bandwidth. Furthermore, using the thermal-frequency-tuning technology, impressive high efficiency above 17% is obtainable in the whole frequency-tuning range.
Bian H-Q, Du* C-H, Pan S, Liu* P-K. Terahertz frequency- and mode-insensitive broadband quasi-optical converter antenna system. ournal of Infrared Millimeter and Terahertz Waves [Internet]. 2018;39:1065-1078. 访问链接Abstract
Recently emerged multimode gyrotron, a high-power broadband terahertz radiator, encounters the challenge of efficiently converting a series of operating whispering-gallery modes (WGMs) into free-space Gaussian beams. To this demand, we propose a frequency- and mode-insensitive antenna capable of broadband multimode converting. For a single mode, to achieve broadband operation, special reflector configuration and large-radius launcher guarantee the system high robustness to frequency-induced wave number variation. Furthermore, for a series of operating WGMs, in order to achieve multimode operation, high-order mode indices guarantees familiar field patterns and ray trajectories. In particular, high-purity Gaussian beams are simultaneously achieved in different WGMs of broad continuous bands, including 351–361 GHz for TE11,2 mode, 375–385 GHz for TE12,2 mode, and 398–410 GHz for TE13,2 mode. The results are verified by both the vector diffraction theory and the method of momentum. This kind of mode converter will promote the development of multimode gyrotrons and other antenna-feeder systems for high-power terahertz applications.
Pan S, Du* C-H, Gao Z-C, Bian H-Q, Liu* P-K. Electronic-tuning frequency stabilization of a THz gyrotron oscillator. IEEE Trans. Electron Devices [Internet]. 2018;65(8):3466-3472. 访问链接Abstract
Gyrotron oscillator, as one kind of efficient terahertz (THz) source, is developed with the capability of frequency and power tuning to meet diverse application demands. Due to system nonlinearity, it is quite difficult to achieve high frequency stabilization (FS) during power tuning without using external auxiliary components. This paper proposes an FS scheme with simultaneous power tuning in gyrotron backward-wave oscillator state. This is realized by compensating the detuning electron cyclotron frequency during the electronic tuning process. The required quasi-linear relationship between the electron-beam pitch factor and the accelerating voltage is numerically verified by using the SLAC EGUN code. The investigation focuses on a Watt-level open-cavity gyrotron oscillator. The tens-of-Watts-level output power can be tuned by over 40% at the FS point, and especially the self-adaptive FS reaches the accuracy of about 10-MHz level. The proposed scheme would be attractive for the high-stability THz-wave heating in material sciences and biomedicines.
Ji X, Du* C-H, Liu* P-K. Terahertz Brewster window for ultra-broadband gyrotron application. IEEE Microwave and Wireless Components Letters [Internet]. 2018;28(9):855-857. 访问链接Abstract
A terahertz (THz) Brewster vacuum window has been developed for the newly emerged ultrabroadband gyrotron application. In the simulation, the influences of the slant angle, the thickness, and the dielectric constant of the window plate on the results were systematically analyzed. In the experimental measurement, two THz high-directivity horn antennas were used to produce and collect a quasi-plane wave that travels through the window. The measurement shows that the window transmission coefficient between 0.33 and 0.50 THz is higher than -1 dB. A conventional Brewster window uses an elliptical window plate, resulting in the asymmetrical stress distribution. In this letter, a novel circular symmetrical ceramic-Kovar brazing scheme is applied to mitigate the challenging asymmetrical stress distribution. This Brewster window would promote the development of the broadband THz gyrotron and other high-power THz systems.
2017
Qi X-B, Du* C-H, Pan S, Liu* P-K. Terahertz broadband tunable pulse gyrotron. Science Sinica Informationis [Internet]. 2017;47(12):1741-1752. 访问链接Abstract
Based on the principle of a relativistic electron cyclotron maser, gyrotrons can generate high-power coherent radiation in the millimeter-terahertz (THz) waveband. A pulse magnet can generate an ultra-high field strength, and simultaneously reduces the volume by several times compared with a conventional superconducting magnet, which promotes a THz gyrotron to break the 1 THz barrier. However, only an extremely short duration around the peak field of the pulse magnet can be used for a conventional open-cavity gyrotron fixed-frequency operation. In this letter, a novel gyrotron interaction scheme is proposed to excite the broadband THz radiation by integrating a broadband pre-bunched interaction circuit with a pulse magnet, which is a promising way to expand the frequency tuning bandwidth, enlarge the magnetic field by utilizing the range of the pulse magnet, extend the operating pulse duration of a gyrotron, and realize the quasi-continuous operation of a pulse magnet gyrotron. After an investigation into the frequency and time domains, a broadband pulse gyrotron driven by a 20 kV low-voltage electron beam is predicted to generate radiation with a frequency of between 0.328 and 0.338 THz, with a peak power of 2.1 kW in a 6 ms pulse duration.
Pan S, Du C-H, Qi X-B, Liu P-K. Broadband terahertz-power extracting by using electron cyclotron maser. Scientific Reports [Internet]. 2017;7:7265. 访问链接Abstract
Terahertz applications urgently require high performance and room temperature terahertz sources. The gyrotron based on the principle of electron cyclotron maser is able to generate watt-to-megawatt level terahertz radiation, and becomes an exceptional role in the frontiers of energy, security and biomedicine. However, in normal conditions, a terahertz gyrotron could generate terahertz radiation with high efficiency on a single frequency or with low efficiency in a relatively narrow tuning band. Here a frequency tuning scheme for the terahertz gyrotron utilizing sequentially switching among several whispering-gallery modes is proposed to reach high performance with broadband, coherence and high power simultaneously. Such mode-switching gyrotron has the potential of generating broadband radiation with 100-GHz-level bandwidth. Even wider bandwidth is limited by the frequency-dependent effective electrical length of the cavity. Preliminary investigation applies a pre-bunched circuit to the single-mode wide-band tuning. Then, more broadband sweeping is produced by mode switching in great-range magnetic tuning. The effect of mode competition, as well as critical engineering techniques on frequency tuning is discussed to confirm the feasibility for the case close to reality. This multi-mode-switching scheme could make gyrotron a promising device towards bridging the so-called terahertz gap.
Qi X-B, Du C-H, Zhu J-F, Pan S, Liu P-K. The design of a multi-harmonic step-tunable gyrotron. Physics of Plasmas [Internet]. 2017;24(3):033101. 访问链接Abstract
The theoretical study of a step-tunable gyrotron controlled by successive excitation of multi-harmonic modes is presented in this paper. An axis-encircling electron beam is employed to eliminate the harmonic mode competition. Physics images are depicted to elaborate the multi-harmonic interaction mechanism in determining the operating parameters at which arbitrary harmonic tuning can be realized by magnetic field sweeping to achieve controlled multiband frequencies' radiation. An important principle is revealed that a weak coupling coefficient under a high-harmonic interaction can be compensated by a high Q-factor. To some extent, the complementation between the high Q-factor and weak coupling coefficient makes the high-harmonic mode potential to achieve high efficiency. Based on a previous optimized magnetic cusp gun, the multi-harmonic step-tunable gyrotron is feasible by using harmonic tuning of first-to-fourth harmonic modes. Multimode simulation shows that the multi-harmonic gyrotron can operate on the 34 GHz first-harmonic TE11 mode, 54 GHz second-harmonic TE21 mode, 74 GHz third-harmonic TE31 mode, and 94 GHz fourth-harmonic TE41 mode, corresponding to peak efficiencies of 28.6%, 35.7%, 17.1%, and 11.4%, respectively. The multi-harmonic step-tunable gyrotron provides new possibilities in millimeter–terahertz source development especially for advanced terahertz applications.
Qi X-B, Du C-H, Pan S, Ji X, Huang B, Liu P-K. Terahertz Broadband-Tunable Minigyrotron With a Pulse Magnet. IEEE Transactions on Electron Devices [Internet]. 2017;64(2):527-535. 访问链接Abstract
A minigyrotron scheme controlled by a compact pulse magnet to excite broadband terahertz (THz) radiation is presented here. In comparison to an open-cavity circuit, the adopted prebunched backward-wave interaction circuit can expand tuning bandwidth tenfold under the control of time-varying magnetic field strength, which also significantly extends the available duration time of the pulse magnet for gyrotron operation. A quasi-optical mode convertor and a Brewster window constitute the output system to transfer the broadband radiation from the circuit into free space. A systematic gyrotron design is also presented. Driven by a low-voltage electron beam, the minigyrotron is predicted to generate radiation with 10-GHz tuning bandwidth around 0.33 THz and a maximum peak power of 2.1 kW with 6-ms pulse duration, using a TE6,2 mode interaction. Such a THz gyrotron with broad tunable bandwidth, kilowatt level power, and with the unique advantage of a compact configuration is the key to high-power THz scientific and industrial applications.
2016
Du C-H. Theoretical Study of a Broadband Quasi-Optical Mode Converter for Pulse Gyrotron Devices Qi X-B. IEEE Trans. on Plasma Science [Internet]. 2016;44(10):2348-2355. 访问链接Abstract
Theoretical investigation of a broadband quasi-optical mode converter for 330-GHz TE62 mode gyrotron application is presented. The converter consists of a Vlasov launcher and three reflector mirrors. Special considerations, including a Vlasov launcher with reasonably large aperture radius and optimized combination of two elliptic reflectors and a bifocal parabolic reflector, are the keys to achieve broadband mode converting. The optimized internal converter is well compatible with the gyrotron electron-optical system and generates Gaussian beam with efficiency higher than 80% in an extraordinary broadband range between 310 and 340 GHz. The principle of the broadband converter can also be applied to gyrotron amplifiers.
Liu Y-Q, Du C-H, Liu P-K. Terahertz Electronic Source Based on Spoof Surface Plasmons on the Doubly Corrugated Metallic Waveguide. IEEE Transactions on Plasma Science [Internet]. 2016;44(12):3288-3294. 访问链接Abstract
Spoof surface plasmons (SSP) has become an active research topic in microwave and terahertz (THz) spectrum since its extraordinary optical and physical properties. The strong near field of SSP mode on the corrugated metal surfaces makes it especially attractive for developing a THz electronic source. A THz electronic source based on the efficient generation of SSP modes on the doubly corrugated metallic waveguide is proposed and studied in this paper. The analytical dispersion relations of SSP modes are obtained based on a modal expansion method and the field profiles of SSP modes are also presented by the finite integration method. Besides, the interaction between SSP and injected electron beam is modeled and implemented by particle-in-cell (PIC) simulation based on finite difference time domain algorithm. The gap size between the doubly corrugated metal surfaces can significantly influence the output power and PIC simulation results reveal that output power can be increased from 272 mW to 36.5 W when the gap size decreases from 90 to 40 μm at the frequency near 1 THz by the 19.55 kV, 1 A injected electron beam within 4.5-mm interaction length. The dependencies of the output performance on electron beam parameters are also investigated and we find that there is an optimized beam voltage for the given operation frequency. Various electron beams of pulse and direct current electron beam are studied and we find that half pulsewidth of periodical electron beam is more preferable than other emissive shape of injected electron beam for the given structure. Our studies on the efficient generation of SSP modes on the doubly corrugated metallic waveguide may provide a new way to develop THz electronic sources.
Liu R-Q, Kong L-B, Du C-H, Liu P-K. A Terahertz Electronic Source Based on the Spoof Surface Plasmon With Subwavelength Metallic Grating. IEEE Transactions on Plasma Science. 2016;44(6):930-937.Abstract
A terahertz electronic source based on the spoof surface plasmon (SSP) with 2-D subwavelength metallic grating is presented. The SSP dispersion relation of plasmonic grating is derived by a simplified modal expansion method, and the coupling and interaction between the SSP and the electron beam is studied by particle-in-cell simulation. The results reveal that the output performance highly depends on the location of electron beam from grating surface. For an injected electron beam with 19.15 kV and 0.5 A, the SSP output power can reach 22.7 W for the optimized distance of the beam from the grating surface at a frequency near 1 THz for the given structure. Besides, the influence of different electron beam parameters on output power is also investigated and we find that pulse electron beam is preferable than continuous electron beam for good performance. There is an optimized operation frequency for the given beam voltage. Furthermore, output performance can be improved by changing grating structure parameters. By decreasing the grating groove filling factor from 0.8 to 0.2, the SSP output power can be increased from 17.2 to 23.6 W. The SSP power can also be significantly enhanced from 14 to 28.6 W using shallow grating with a groove depth changing from 76 to 56 渭m for the optimized operation frequency with the same electron beam. The present work may provide a new avenue to obtain powerful THz electronic sources.
2015
Du C-H, Qi X-B, Liu* P-K. Broadband tunable pre-bunched electron cyclotron maser for terahertz application. IEEE Transactions on Terahertz Science and Technology [Internet]. 2015;5(2):236-243. 访问链接Abstract
The relativistic electron cyclotron maser (ECM) has been successfully applied to generating high-power THz wave. In order to realize the additional advantages of broadband tuning and high efficiency interaction, this paper is devoted to exploring the THz pre-bunched ECM. Other than a conventional open-cavity tunable gyrotron consecutively switching between axial modes to realize frequency tuning, a pre-bunched ECM system operates on the backward traveling-wave resonance to achieve broadband smooth tuning. Especially, an interaction circuit of specified axial profile of beam-wave detuning frequency is built to achieve high efficiency. An optimized 0.1 THz pre-bunched ECM system using an electron beam of 30 kV voltage and 3 A current is predicted to generate broad bandwidth of 10 GHz and efficiency between 10% ~ 25%. The broadband tuning pre-bunched ECM is promising for a new generation of broadband and high-power THz source.

Pages