摘要:
Based on the principle of a relativistic electron cyclotron maser, gyrotrons can generate high-power coherent radiation in the millimeter-terahertz (THz) waveband. A pulse magnet can generate an ultra-high field strength, and simultaneously reduces the volume by several times compared with a conventional superconducting magnet, which promotes a THz gyrotron to break the 1 THz barrier. However, only an extremely short duration around the peak field of the pulse magnet can be used for a conventional open-cavity gyrotron fixed-frequency operation. In this letter, a novel gyrotron interaction scheme is proposed to excite the broadband THz radiation by integrating a broadband pre-bunched interaction circuit with a pulse magnet, which is a promising way to expand the frequency tuning bandwidth, enlarge the magnetic field by utilizing the range of the pulse magnet, extend the operating pulse duration of a gyrotron, and realize the quasi-continuous operation of a pulse magnet gyrotron. After an investigation into the frequency and time domains, a broadband pulse gyrotron driven by a 20 kV low-voltage electron beam is predicted to generate radiation with a frequency of between 0.328 and 0.338 THz, with a peak power of 2.1 kW in a 6 ms pulse duration.
访问链接