Self-powered digital-analog hybrid electronic skin for noncontact displacement sensing

Citation:

Guo H, Wu H, Song Y, Miao L, Chen X, Chen H, Su Z, Han M, Zhang H. Self-powered digital-analog hybrid electronic skin for noncontact displacement sensing. Nano Energy [Internet]. 2019;58:121 - 129.

摘要:

The fast progressing electronic skins are spreading their applications into many aspects of human life. In terms of motion sensing, drawbacks exist in state-of-the-art approach of integrating sensing units into arrays e.g. the tradeoff between resolution and effective area, power consumption and interacting experience. This paper presents a novel self-powered digital-analog hybrid electronic skin for measuring noncontact linear planar displacement which achieves a high resolution of (0.75 mm, 1.07 mm, 2.20°) in a large area of 100 cm2 in three degrees of freedom. Owing to utilization of masked silver nanowires (AgNWs) spray coating and corona charging techniques in the fabrication process, this electronic skin is transparent and stretchable, while realizing self-powered sensing of an electret based on electrostatic inductions. Theory and localizing functions are proposed and proved by accordance with simulation and standard testing results. This electronic skin is capable of acting as an effective human-machine interface, which shows its future potential of practical usage in portable electronics, healthcare devices, and artificial intelligence, etc.

Website