Hydraulic correction method (HCM) to enhance the efficiency of SRTM DEM in flood modeling

摘要:

Digital Elevation Model (DEM) is one of the most important controlling factors determining the simulation accuracy of hydraulic models. However, the currently available global topographic data is confronted with limitations for application in 2-D hydraulic modeling, mainly due to the existence of vegetation bias, random errors and insufficient spatial resolution. A hydraulic correction method (HCM) for the SRTM DEM is proposed in this study to improve modeling accuracy. Firstly, we employ the global vegetation corrected DEM (i.e. Bare-Earth DEM), developed from the SRTM DEM to include both vegetation height and SRTM vegetation signal. Then, a newly released DEM, removing both vegetation bias and random errors (i.e. Multi-Error Removed DEM), is employed to overcome the limitation of height errors. Last, an approach to correct the Multi-Error Removed DEM is presented to account for the insufficiency of spatial resolution, ensuring flow connectivity of the river networks. The approach involves: (a) extracting river networks from the Multi-Error Removed DEM using an automated algorithm in ArcGIS; (b) correcting the location and layout of extracted streams with the aid of Google Earth platform and Remote Sensing imagery; and (c) removing the positive biases of the raised segment in the river networks based on bed slope to generate the hydraulically corrected DEM. The proposed HCM utilizes easily available data and tools to improve the flow connectivity of river networks without manual adjustment. To demonstrate the advantages of HCM, an extreme flood event in Huifa River Basin (China) is simulated on the original DEM, Bare-Earth DEM, Multi-Error removed DEM, and hydraulically corrected DEM using an integrated hydrologic-hydraulic model. A comparative analysis is subsequently performed to assess the simulation accuracy and performance of four different DEMs and favorable results have been obtained on the corrected DEM. (C) 2018 Elsevier B.V. All rights reserved.