Analysis of the Chesapeake Bay Hypoxia Regime Shift: Insights from Two Simple Mechanistic Models

摘要:

Recent studies of Chesapeake Bay hypoxia suggest higher susceptibility to hypoxia in years after the 1980s. We used two simple mechanistic models and Bayesian estimation of their parameters and prediction uncertainty to explore the nature of this regime shift. Model estimates show increasing nutrient conversion efficiency since the 1980s, with lower DO concentrations and large hypoxic volumes as a result. In earlier work, we suggested a 35% reduction from the average 1980-1990 total nitrogen load would restore the Bay to hypoxic volumes of the 1950s-1970s. With Bayesian inference, our model indicates that, if the physical and biogeochemical processes prior to the 1980s resume, the 35% reduction would result in hypoxic volume averaging 2.7 km(3) in a typical year, below the average hypoxic volume of 1950s-1970s. However, if the post-1980 processes persist the 35% reduction would result in much higher hypoxic volume averaging 6.0 km(3). Load reductions recommended in the 2003 agreement will likely meet dissolved oxygen attainment goals if the Bay functions as it did prior to the 1980s; however, it may not reach those goals if current processes prevail.