科研成果 by Year: 2016

2016
Zhang L, Li S, Yi* H, d’Intignano LM, Ding Y. Correlation between NCMS Policy Design and Catastrophic Medical Payment: Evidence from 25 Counties in Rural China. Asia-Pacific Journal of Public Health. 2016;28:26-38.
Yang H, Ge Z, Wu D, Tong M, Ni J. Cotransport of bacteria with hematite in porous media: Effects of ion valence and humic acid. Water Research [Internet]. 2016;88:586-594. 访问链接Abstract
This study investigated the influence of multiple colloids (hematite and humic acid) on the transport and deposition of bacteria (Escherichia coli) in packed porous media in both NaCl (5 mM) and CaCl2 (1 mM) solutions at pH 6. Due to the alteration of cell physicochemical properties, the presence of hematite and humic acid in cell suspensions significantly affected bacterial transport and deposition in quartz sand. Specifically, the presence of hematite (5 mg/L) decreased cell transport (increased cell deposition) in quartz sand in both NaCl and CaCl2 solutions, which could be attributed to the less negative overall zeta potentials of bacteria induced by the adsorption of positively charged hematite onto cell surfaces. The presence of a low concentration (0.1 mg/L) of humic acid in bacteria and hematite mixed suspensions reduced the adsorption of hematite onto cell surfaces, leading to increased cell transport in quartz sand in NaCl solutions, whereas, in CaCl2 solutions, the presence of 0.1 mg/L humic acid increased the formation of hematite-cell aggregates and thus decreased cell transport in quartz sand. When the concentration of humic acid was increased to 1 mg/L, enhanced cell transport was observed in both NaCl and CaCl2 solutions. The decreased adsorption of hematite onto cell surfaces as well as the competition of deposition sites on quartz sand with bacteria by the suspended humic acid contributed to the increased cell transport. © 2015 Elsevier Ltd.
Zhang X, Liu Y, Guo H. Cross-lake comparisons of physical and biological settling of phosphorus: A phosphorus budget model with Bayesian hierarchical approach. ECOLOGICAL MODELLING. 2016;337:231-240.Abstract
Phosphorus (P) is viewed as one limiting factor for phytoplankton growth in freshwater lakes. Simple budget models are very efficient for cross-lakes comparisons, while neglecting key distinction between algal P and other forms. Here, a phosphorus budget model was developed to balance between process resolution and cross-system applicability, in which lake total phosphorus (TP) was divided into algal-bound P and other fractions. The model was tested for six lakes on the Yunnan Plateau, China and the Markov Chain Monte Carlo (MCMC) algorithm of Bayesian hierarchical inference was employed for parameters estimation. The model results showed that (a) both algal species composition and P loading are key factors that influence the efficiency of converting phosphorus into algal P; (b) variability of the settling velocity of non-algal P and algal P decreases with increasing TP concentrations, representing a lower capacity for restoration; and (c) settling velocity declined exponentially with the increase of trophic state index, indicating a potential rapid rise of P removal rates during eutrophication restoration. Two conceptual models were then proposed to identify the prior countermeasures for eutrophication restoration in the lakes: (a) for Conceptual Model II, e.g. Lake Lugu, increasing the physical settling of phosphorus should be given priority to; (b) for Conceptual Model I, including the other five lakes, increasing the biological settling of phosphorus should be paid extra attention. (C) 2016 Elsevier B.V. All rights reserved.
Zhang X, Liu Y, Guo H. Cross-lake comparisons of physical and biological settling of phosphorus: A phosphorus budget model with Bayesian hierarchical approach. Ecological Modelling [Internet]. 2016;337:231 - 240. 访问链接Abstract
Abstract Phosphorus (P) is viewed as one limiting factor for phytoplankton growth in freshwater lakes. Simple budget models are very efficient for cross-lakes comparisons, while neglecting key distinction between algal P and other forms. Here, a phosphorus budget model was developed to balance between process resolution and cross-system applicability, in which lake total phosphorus (TP) was divided into algal-bound P and other fractions. The model was tested for six lakes on the Yunnan Plateau, China and the Markov Chain Monte Carlo (MCMC) algorithm of Bayesian hierarchical inference was employed for parameters estimation. The model results showed that (a) both algal species composition and P loading are key factors that influence the efficiency of converting phosphorus into algal P; (b) variability of the settling velocity of non-algal P and algal P decreases with increasing TP concentrations, representing a lower capacity for restoration; and (c) settling velocity declined exponentially with the increase of trophic state index, indicating a potential rapid rise of P removal rates during eutrophication restoration. Two conceptual models were then proposed to identify the prior countermeasures for eutrophication restoration in the lakes: (a) for Conceptual Model II, e.g. Lake Lugu, increasing the physical settling of phosphorus should be given priority to; (b) for Conceptual Model I, including the other five lakes, increasing the biological settling of phosphorus should be paid extra attention.
Fu M, Tang Z, Li X, Ning Z, Pan D, Zhao J, Wei X, Chen Q. Crystal Phase- and Orientation-Dependent Electrical Transport Properties of InAs Nanowires. NANO LETTERS. 2016;16:2478-2484.
Liao J, Zhao L, Cao X, Sun J, Gao Z, Wang J, Jiang D, Fan H, Huang Y. Cyanobacteria in lakes on Yungui Plateau, China are assembled via niche processes driven by water physicochemical property, lake morphology and watershed land-use. Scientific reports. 2016;6:36357.
Gao J, Tao J, Liang W, Jiang ZF. Cyclic (di) nucleotides: the common language shared by microbe and host. Current Opinion in Microbiology. 2016;30:79-87.
Wang Y, Shi M, You S, Xu C. DCT inspired feature transform for image retrieval and reconstruction. IEEE TIP. 2016.
Yuan L, Zhi W, Liu Y, Smiley E, Gallagher D, Chen X, Dietrich AM, Zhang H. Degradation of cis- and trans-(4-methylcyclohexyl) methanol inactivated sludge. 2016;306:247–256.
Wang Y, LIU Y, JIANG M, JIA S, Zhang X. Delay-locked loop based frequency quadrupler with wide operating range and fast locking characteristics, in IEEE International Symposium on Circuits and Systems (ISCAS). Montreal, Canada; 2016:1-4.
Yuan J, Wu Y, Liu T, Zhang T, Li J, Liu H-L, Meng FY, Chen P, Hu R, Wang K. Dense Gas in Molecular Cores Associated with Planck Galactic Cold Clumps. \apj. 2016;820:37.
Wang W, Li Y, Wang X, Lv Y, Wang S, Wang K, Shi Y, Xiao L, Chen Z, Gong Q. Density-dependent dynamical coexistence of excitons and free carriers in the organolead perovskite CH3NH3PbI3. PHYSICAL REVIEW B. 2016;94.Abstract
The high efficiency of perovskite solar cells benefits from the high density of photoinduced free carriers. We studied how exciton and free carriers, as the two major photoproducts, coexist inside the CH3NH3PbI3 perovskite. A new density-resolved spectroscopic method was developed for this purpose. The density-dependent coexistence of excitons and free carriers over a wide density range was experimentally observed. The quantitative analysis on the density-resolved spectra revealed a moderate exciton binding energy of 24 +/- 2 meV. The results effectively proved that the strong ionic polarization inside the perovskite has a negligible contribution to exciton formation. The spectra also efficiently uncovered the effective mass of electron-hole pairs. Our spectroscopic method and the results profoundly enrich the understanding of the photophysics in perovskite materials for photovoltaic applications.
Wang W, Li Y, Wang X, Lv Y, Wang S, Wang K, Shi Y, Xiao L, Chen Z, Gong Q. Density-dependent dynamical coexistence of excitons and free carriers in the organolead perovskite CH3NH3PbI3. PHYSICAL REVIEW B. 2016;94.
LU G, Wang Y, ZHANG L, CAO J, Zhang X. Design of a novel static-triggered power-rail ESD clamp circuit in a 65-nm CMOS process. SCIENCE CHINA Information Sciences [Internet]. 2016;59(12):SCIENCE CHINA Information Sciences, 2016, 59(12): 122401(9). 访问链接
Hu X, Li B, Zhang Y, Zhou C, Ma H. Detecting compromised email accounts from the perspective of graph topology, in Proceedings of the 11th International Conference on Future Internet Technologies. ACM; 2016:76–82.
Wang HC, Lu KD. Determination and Parameterization of the Heterogeneous Uptake Coefficient of Dinitrogen Pentoxide (N2O5). Progress in ChemistryProgress in Chemistry. 2016;28:917-933.Abstract
Particulate pollution is a major air pollution problem in Chinese mega-cities. Under such conditions, the atmospheric gas-phase chemistry is strongly influenced by heterogeneous reactions, of which to quantify the heterogeneous reaction processes of N2O5 is essential for the understanding of the nighttime oxidation capacity, regional NOx budget, photochemical ozone prodution, etc. In this paper, we extensively review the research progress of the N2O5 heterogeneous reaction processes such as its reaction mechanism, measurement techniques of the corresponding uptake coefficient (gamma(N2O5)) and the measurement results on different aerosol substrates. The heterogeneous reaction processes of N2O5 is a typical reactive uptake process which can be ideally studied by the aerosol flow tube system. The corresponding laboratory kinetic studies are started from model aerosols (sulfate), and evolved to be more realistic aerosols according to the accumulated knowledges on the aerosol properties obtained in field studies. It is found that the gamma(N2O5) varied from 0. 001 to 0. 2 on different aerosol substrates, more than two orders of magnitude. The variation is influenced by the ambient temperature, relative humidity, mixing state, phase state, aerosol chemical compositions like NO3-, Cl-, SO42-, liquid water content (LWC), organics, etc., of which the uptake coefficient is higher with higher LWC, Cl-, SO42- while lower with higher NO3- and organics. The avaiable field studies in the United States and Europe showed that, to describe gamma(N2O5), these impact factors can' t be independently expressed; and the dependence seems to be very complicated and cross correlated. Therefore the state of art parameterization methods of gamma(N2O5) developed from lab kinetic studies are still not able to describe the field observations. Since high aerosol loading and high N2O5 are always co-located at urban aeras, more field observations and sucessful parameterization of gamma(N2O5) is proposed to be conducted in typical urban conditions including Chinese megacity regions.
Sun H, Hu Z, Zhang J, Wu W, Liang S, Lu S, Liu H. Determination of hydraulic flow patterns in constructed wetlands using hydrogen and oxygen isotopes. JOURNAL OF MOLECULAR LIQUIDS. 2016;223:775-780.Abstract
The treatment efficiency of constructed wetlands (CWs) is highly dependent on the stability of the hydraulic flow patterns. To date, general technologies used to study hydraulic flow patterns of CWs mainly include tracer method, model simulation and velocity measurement, which are either expensive, empirical, or having secondary pollution. In this study, a new technology, which was based on the isotopic composition variation in CWs, was applied to detect the hydraulic flow patterns of two different CWs. Results showed that the hydraulic flow patterns of the two studied wetlands could be detected effectively by using hydrogen and oxygen isotopes. Furthermore, the locations of stagnant areas (SAS) and preferential flow areas (PFAs) were also determined. Significant regional difference in isotopic composition existed inside each CW, and two wetland design suggestions are proposed after hydraulic analysis. One is that the influent of CWs is supposed to be distributed uniformly, and another piece of advice is that the vegetation in the direction perpendicular to water flow should be maintained at the same types and density. (C) 2016 Elsevier B.V. All rights reserved.
Sun Z, Zhao Y, He M, Gu L, Ma C, Jin K-J, Zhao D, Luo N, Zhang Q, Wang N, et al. Deterministic Role of Concentration Surplus of Cation Vacancy Over Anion Vacancy in Bipolar Memristive NiO. ACS Applied Materials & Interfaces [Internet]. 2016;8(18):11583-11591. 访问链接
Gao J, Yang X, Djekidel MN, Wang Y, Xi P, Zhang MQ. Developing bioimaging and quantitative methods to study 3D genome. Quantitative Biology. 2016;4:129-147.
Peng J, Guo X, Jiang X, Zhao D*, Ma Y*. Developing efficient heavy-atom-free photosensitizers applicable to TTA upconversion in polymer films. Chem. Sci. [Internet]. 2016;7:1233-1237. [Read Online]Abstract
Heavy-atom-free triplet photosensitizers are developed by harnessing the thermally active triplet state of carbazolyl dicyanobenzene (CDCB) derivatives and applied to realize visible-to-ultraviolet photon upconversion (UC) via triplet-triplet annihilation (TTA). Demonstrating an annihilator-appending strategy, the designed sensitizers effectively realize TTA UC in polyurethane films with 2,7-di-tert-butylpyrene (DBP) as the annihilator/emitter. The covalently tethered DBP to CDCB is proven critical for achieving the superior sensitizing and UC performance in the solid matrix, essentially by suppressing the reverse ISC and more effectively transferring triplet excitons to free emitters.

Pages