Phosphorus (P) is viewed as one limiting factor for phytoplankton growth in freshwater lakes. Simple budget models are very efficient for cross-lakes comparisons, while neglecting key distinction between algal P and other forms. Here, a phosphorus budget model was developed to balance between process resolution and cross-system applicability, in which lake total phosphorus (TP) was divided into algal-bound P and other fractions. The model was tested for six lakes on the Yunnan Plateau, China and the Markov Chain Monte Carlo (MCMC) algorithm of Bayesian hierarchical inference was employed for parameters estimation. The model results showed that (a) both algal species composition and P loading are key factors that influence the efficiency of converting phosphorus into algal P; (b) variability of the settling velocity of non-algal P and algal P decreases with increasing TP concentrations, representing a lower capacity for restoration; and (c) settling velocity declined exponentially with the increase of trophic state index, indicating a potential rapid rise of P removal rates during eutrophication restoration. Two conceptual models were then proposed to identify the prior countermeasures for eutrophication restoration in the lakes: (a) for Conceptual Model II, e.g. Lake Lugu, increasing the physical settling of phosphorus should be given priority to; (b) for Conceptual Model I, including the other five lakes, increasing the biological settling of phosphorus should be paid extra attention. (C) 2016 Elsevier B.V. All rights reserved.
Abstract Phosphorus (P) is viewed as one limiting factor for phytoplankton growth in freshwater lakes. Simple budget models are very efficient for cross-lakes comparisons, while neglecting key distinction between algal P and other forms. Here, a phosphorus budget model was developed to balance between process resolution and cross-system applicability, in which lake total phosphorus (TP) was divided into algal-bound P and other fractions. The model was tested for six lakes on the Yunnan Plateau, China and the Markov Chain Monte Carlo (MCMC) algorithm of Bayesian hierarchical inference was employed for parameters estimation. The model results showed that (a) both algal species composition and P loading are key factors that influence the efficiency of converting phosphorus into algal P; (b) variability of the settling velocity of non-algal P and algal P decreases with increasing TP concentrations, representing a lower capacity for restoration; and (c) settling velocity declined exponentially with the increase of trophic state index, indicating a potential rapid rise of P removal rates during eutrophication restoration. Two conceptual models were then proposed to identify the prior countermeasures for eutrophication restoration in the lakes: (a) for Conceptual Model II, e.g. Lake Lugu, increasing the physical settling of phosphorus should be given priority to; (b) for Conceptual Model I, including the other five lakes, increasing the biological settling of phosphorus should be paid extra attention.
The high efficiency of perovskite solar cells benefits from the high density of photoinduced free carriers. We studied how exciton and free carriers, as the two major photoproducts, coexist inside the CH3NH3PbI3 perovskite. A new density-resolved spectroscopic method was developed for this purpose. The density-dependent coexistence of excitons and free carriers over a wide density range was experimentally observed. The quantitative analysis on the density-resolved spectra revealed a moderate exciton binding energy of 24 +/- 2 meV. The results effectively proved that the strong ionic polarization inside the perovskite has a negligible contribution to exciton formation. The spectra also efficiently uncovered the effective mass of electron-hole pairs. Our spectroscopic method and the results profoundly enrich the understanding of the photophysics in perovskite materials for photovoltaic applications.
Particulate pollution is a major air pollution problem in Chinese mega-cities. Under such conditions, the atmospheric gas-phase chemistry is strongly influenced by heterogeneous reactions, of which to quantify the heterogeneous reaction processes of N2O5 is essential for the understanding of the nighttime oxidation capacity, regional NOx budget, photochemical ozone prodution, etc. In this paper, we extensively review the research progress of the N2O5 heterogeneous reaction processes such as its reaction mechanism, measurement techniques of the corresponding uptake coefficient (gamma(N2O5)) and the measurement results on different aerosol substrates. The heterogeneous reaction processes of N2O5 is a typical reactive uptake process which can be ideally studied by the aerosol flow tube system. The corresponding laboratory kinetic studies are started from model aerosols (sulfate), and evolved to be more realistic aerosols according to the accumulated knowledges on the aerosol properties obtained in field studies. It is found that the gamma(N2O5) varied from 0. 001 to 0. 2 on different aerosol substrates, more than two orders of magnitude. The variation is influenced by the ambient temperature, relative humidity, mixing state, phase state, aerosol chemical compositions like NO3-, Cl-, SO42-, liquid water content (LWC), organics, etc., of which the uptake coefficient is higher with higher LWC, Cl-, SO42- while lower with higher NO3- and organics. The avaiable field studies in the United States and Europe showed that, to describe gamma(N2O5), these impact factors can' t be independently expressed; and the dependence seems to be very complicated and cross correlated. Therefore the state of art parameterization methods of gamma(N2O5) developed from lab kinetic studies are still not able to describe the field observations. Since high aerosol loading and high N2O5 are always co-located at urban aeras, more field observations and sucessful parameterization of gamma(N2O5) is proposed to be conducted in typical urban conditions including Chinese megacity regions.
The treatment efficiency of constructed wetlands (CWs) is highly dependent on the stability of the hydraulic flow patterns. To date, general technologies used to study hydraulic flow patterns of CWs mainly include tracer method, model simulation and velocity measurement, which are either expensive, empirical, or having secondary pollution. In this study, a new technology, which was based on the isotopic composition variation in CWs, was applied to detect the hydraulic flow patterns of two different CWs. Results showed that the hydraulic flow patterns of the two studied wetlands could be detected effectively by using hydrogen and oxygen isotopes. Furthermore, the locations of stagnant areas (SAS) and preferential flow areas (PFAs) were also determined. Significant regional difference in isotopic composition existed inside each CW, and two wetland design suggestions are proposed after hydraulic analysis. One is that the influent of CWs is supposed to be distributed uniformly, and another piece of advice is that the vegetation in the direction perpendicular to water flow should be maintained at the same types and density. (C) 2016 Elsevier B.V. All rights reserved.
Heavy-atom-free triplet photosensitizers are developed by harnessing the thermally active triplet state of carbazolyl dicyanobenzene (CDCB) derivatives and applied to realize visible-to-ultraviolet photon upconversion (UC) via triplet-triplet annihilation (TTA). Demonstrating an annihilator-appending strategy, the designed sensitizers effectively realize TTA UC in polyurethane films with 2,7-di-tert-butylpyrene (DBP) as the annihilator/emitter. The covalently tethered DBP to CDCB is proven critical for achieving the superior sensitizing and UC performance in the solid matrix, essentially by suppressing the reverse ISC and more effectively transferring triplet excitons to free emitters.