As a phase space language for quantum mechanics, the Wigner function approach bears a close analogy to classical mechanics and has been drawing growing attention, especially in simulating quantum many-body systems. However, deterministic numerical solutions have been almost exclusively confined to one-dimensional one-body systems and few results are reported even for one-dimensional two-body problems. This paper serves as the first attempt to solve the time-dependent many-body Wigner equation through a grid-based advective-spectral-mixed method. The main feature of the method is to resolve the linear advection in $(\bm{x},t)$-space by an explicit three-step characteristic scheme coupled with the piecewise cubic spline interpolation, while the Chebyshev spectral element method in $\bm k$-space is adopted for accurate calculation of the nonlocal pseudo-differential term. Not only the time step of the resulting method is not restricted by the usual CFL condition and thus a large time step is allowed, but also the mass conservation can be maintained. In particular, for the system consisting of identical particles, the advective-spectral-mixed method can also rigorously preserve physical symmetry relations. The performance is validated through several typical numerical experiments, like the Gaussian barrier scattering, electron-electron interaction and a Helium-like system, where the third-order accuracy against both grid spacing and time stepping is observed.
The aggregation behavior of 9, 36, and 112 nm hematite particles was studied in the presence of OmcA, a bacterial extracellular protein, in aqueous dispersions at pH 5.7 through time-resolved dynamic light scattering, electrophoretic mobility, and circular dichroism spectra, respectively. At low salt concentration, the attachment efficiencies of hematite particles in all sizes first increased, then decreased, and finally remained stable with the increase of OmcA concentration, indicating the dominant interparticle interaction changed along with the increase in the protein-to-particle ratio. Nevertheless, at high salt concentration, the attachment efficiencies of all hematite samples gradually decreased with increasing OmcA concentration, which can be attributed to increasing steric force. Additionally, the aggregation behavior of OmcA–hematite conjugates was more correlated to total particle–surface area than primary particle size. It was further established that OmcA could stabilize hematite nanoparticles more efficiently than bovine serum albumin (BSA), a model plasma protein, due to the higher affinity of OmcA to hematite surface. This study highlighted the effects of particle properties, solution conditions, and protein properties on the complicated aggregation behavior of protein–nanoparticle conjugates in aqueous environments.
As part of the 12th Five-Year Plan, the Chinese government has developed air pollution prevention and control plans for key regions with a focus on the power, transport, and industrial sectors. Here, we investigate the contribution of residential emissions to regional air pollution in highly polluted eastern China during the heating season, and find that dramatic improvements in air quality would also result from reduction in residential emissions. We use the Weather Research and Forecasting model coupled with Chemistry to evaluate potential residential emission controls in Beijing and in the Beijing, Tianjin, and Hebei (BTH) region. In January and February 2010, relative to the base case, eliminating residential emissions in Beijing reduced daily average surface PM2.5 (particulate mater with aerodynamic diameter equal or smaller than 2.5 micrometer) concentrations by 14 +/- 7 mu g.m(-3) (22 +/- 6% of a baseline concentration of 67 +/- 41 mu g.m(-3); mean +/- SD). Eliminating residential emissions in the BTH region reduced concentrations by 28 +/- 19 mu g.m(-3) (40 +/- 9% of 67 +/- 41 mu g.m(-3)), 44 +/- 27 mu g.m(-3) (43 +/- 10% of 99 +/- 54 mu g.m(-3)), and 25 +/- 14 mu g.m(-3) (35 +/- 8% of 70 +/- 35 mu g.m(-3)) in Beijing, Tianjin, and Hebei provinces, respectively. Annually, elimination of residential sources in the BTH region reduced emissions of primary PM2.5 by 32%, compared with 5%, 6%, and 58% achieved by eliminating emissions from the transportation, power, and industry sectors, respectively. We also find air quality in Beijing would benefit substantially from reductions in residential emissions from regional controls in Tianjin and Hebei, indicating the value of policies at the regional level.
As part of the 12th Five-Year Plan, the Chinese government has developed air pollution prevention and control plans for key regions with a focus on the power, transport, and industrial sectors. Here, we investigate the contribution of residential emissions to regional air pollution in highly polluted eastern China during the heating season, and find that dramatic improvements in air quality would also result from reduction in residential emissions. We use the Weather Research and Forecasting model coupled with Chemistry to evaluate potential residential emission controls in Beijing and in the Beijing, Tianjin, and Hebei (BTH) region. In January and February 2010, relative to the base case, eliminating residential emissions in Beijing reduced daily average surface PM2.5 (particulate mater with aerodynamic diameter equal or smaller than 2.5 micrometer) concentrations by 14 +/- 7 mu g.m(-3) (22 +/- 6% of a baseline concentration of 67 +/- 41 mu g.m(-3); mean +/- SD). Eliminating residential emissions in the BTH region reduced concentrations by 28 +/- 19 mu g.m(-3) (40 +/- 9% of 67 +/- 41 mu g.m(-3)), 44 +/- 27 mu g.m(-3) (43 +/- 10% of 99 +/- 54 mu g.m(-3)), and 25 +/- 14 mu g.m(-3) (35 +/- 8% of 70 +/- 35 mu g.m(-3)) in Beijing, Tianjin, and Hebei provinces, respectively. Annually, elimination of residential sources in the BTH region reduced emissions of primary PM2.5 by 32%, compared with 5%, 6%, and 58% achieved by eliminating emissions from the transportation, power, and industry sectors, respectively. We also find air quality in Beijing would benefit substantially from reductions in residential emissions from regional controls in Tianjin and Hebei, indicating the value of policies at the regional level.
With China's significant role on pollution emissions and related health damage, deep and up-to-date understanding of China's air pollution policies is of worldwide relevance. Based on scientific evidence for the evolution of air pollution and the institutional background of environmental governance in China, we examine the development of air pollution control policies from the 1980s and onwards. We show that: (1) The early policies, until 2005, were ineffective at reducing emissions; (2) During 2006-2012, new instruments which interact with political incentives were introduced in the 11th Five-Year Plan, and the national goal of reducing total sulfur dioxide (SO₂) emissions by 10% was achieved. However, regional compound air pollution problems dominated by fine particulate matter (PM) and ground level ozone (O₃) emerged and worsened; (3) After the winter-long PM episode in eastern China in 2013, air pollution control policies have been experiencing significant changes on multiple fronts. In this work we analyze the different policy changes, the drivers of changes and key factors influencing the effectiveness of policies in these three stages. Lessons derived from the policy evolution have implications for future studies, as well as further reforming the management scheme towards air quality and health risk oriented directions.
Herein, we report an all-polymer solar cell with a PCE of over 5% fabricated with non-halogenated solvent. Our method of polymer side-chain engineering using polystyrene enhanced the solubility of polymers in toluene. The phase separation size of the polymer-polymer blend was controlled by tuning the additive concentration. Three different additives were employed and studied. To the best of our knowledge, this is the highest performing all-polymer solar cell fabricated with both non halogenated solvent and non-halogenated additive, which highlights its potential toward environmentally friendly manufacturing of all polymer organic solar cells.
The photolysis frequency of NO2, j(NO2), is an important analytical parameter in the study of tropospheric chemistry. A chemical actinometer (CA) was built to measure the ambient j(NO2) based on a high precision NOx instrument with 1 min time resolution. Parallel measurements of the ambient j(NO2) by using the CA and a commercial spectroradiometer (SR) were conducted at a typical urban site (Peking University Urban Environmental Monitoring Station) in Beijing. In general, good agreement was achieved between the CA and SR data with a high linear correlation coefficient (R-2 = 0.977) and a regression slope of 1.12. The regression offset was negligible compared to the measured signal level. The j(NO2) data were calculated using the tropospheric ultraviolet visible radiation (TUV) model, which was constrained to observe aerosol optical properties. The calculated j(NO2) was intermediate between the results obtained with CA and SR, demonstrating the consistency of all the parameters observed at this site. The good agreement between the CA and SR data, and the consistency with the TUV model results, demonstrate the good performance of the installed SR instrument. Since a drift of the SR sensitivity is expected by the manufacturer, we propose a regular check of the data acquired via SR against those obtained by CA for long-term delivery of a high quality series of j(NO2) data. Establishing such a time series will be invaluable for analyzing the long-term atmospheric oxidation capacity trends as well as O-3 pollution for urban Beijing. (C) Higher Education Press and Springer-Verlag Berlin Heidelberg 2016
Both ammonia-oxidizing archaea (AOA) and bacteria (AOB) can play important roles in the microbial oxidation of ammonia nitrogen in freshwater lake, but information on spatiotemporal variation in water column and sediment community structure is still limited. Additionally, the drivers of the differences between sediment and water assemblages are still unclear. The present study investigated the variation of AOA and AOB communities in both water columns and sediments of eutrophic freshwater Dianchi Lake. The abundance, diversity, and structure of both planktonic and sediment ammonia-oxidizing microorganisms in Dianchi Lake showed the evident changes with sampling site and time. In both water columns and sediments, AOB amoA gene generally outnumbered AOA, and the AOB/AOA ratio was much higher in summer than in autumn. The total AOA amoA abundance was relatively great in autumn, while sediment AOB was relatively abundant in summer. Sediment AOA amoA abundance was likely correlated with ammonia nitrogen (rs = 0.963). The AOB/AOA ratio in lake sediment was positively correlated with total phosphorus (rs = 0.835), while pH, dissolved organic carbon, and ammonia nitrogen might be the key driving forces for the AOB/AOA ratio in lake water. Sediment AOA and AOB diversity was correlated with nitrate nitrogen (rs = -0.786) and total organic carbon (rs = 0.769), respectively, while planktonic AOB diversity was correlated with ammonia nitrogen (rs = 0.854). Surface water and sediment in the same location had a distinctively different microbial community structure. In addition, sediment AOB community structure was influenced by total phosphorus, while total phosphorus might be a key determinant of planktonic AOB community structure.
Miraldo A, Li S, Borregaard MK, Flórez-Rodríguez A, Gopalakrishnan S, Rizvanovic M, Wang Z, Rahbek C, Marske KA, Nogués-Bravo D. An Anthropocene map of genetic diversity. ScienceScience. 2016;353:1532-1535.Abstract
The Anthropocene is witnessing a loss of biodiversity, with well-documented declines in the diversity of ecosystems and species. For intraspecific genetic diversity, however, we lack even basic knowledge on its global distribution. We georeferenced 92,801 mitochondrial sequences for >4500 species of terrestrial mammals and amphibians, and found that genetic diversity is 27% higher in the tropics than in nontropical regions. Overall, habitats that are more affected by humans hold less genetic diversity than wilder regions, although results for mammals are sensitive to choice of genetic locus. Our study associates geographic coordinates with publicly available genetic sequences at a massive scale, yielding an opportunity to investigate both the drivers of this component of biodiversity and the genetic consequences of the anthropogenic modification of nature.%U http://science.sciencemag.org/content/sci/353/6307/1532.full.pdf
Ferroelectric materials exhibiting anomalous photovoltaic properties are one of the foci of photovoltaic research. We review the foundations and recent progress in ferroelectric materials for photovoltaic applications, including the physics of ferroelectricity, nature of ferroelectric thin films, characteristics and underlying mechanism of the ferroelectric photovoltaic effect, solar cells based on ferroelectric materials, and other related topics. These findings have important implications for improving the efficiency of photovoltaic cells.