Ferroelectric materials exhibiting anomalous photovoltaic properties are one of the foci of photovoltaic research. We review the foundations and recent progress in ferroelectric materials for photovoltaic applications, including the physics of ferroelectricity, nature of ferroelectric thin films, characteristics and underlying mechanism of the ferroelectric photovoltaic effect, solar cells based on ferroelectric materials, and other related topics. These findings have important implications for improving the efficiency of photovoltaic cells.
In order to study the mechanical properties of shale samples from Bakken Formation, nanoindentation method, an imaging technique borrowed from other engineering disciplines, was used. Different types of nanoindentation curves were analyzed and the applicability of the nanoindentation theories to study mechanical properties of shale samples at nanoscale was demonstrated. Elastic modulus and Hardness of different samples were calculated, compared and related to their mineral compositions and microstructures which are detected by 2D XRD and FESEM methods, respectively. Results showed that samples with more clay minerals (mainly composed of illite) and larger pore structures have less Young's modulus. In addition, based on the energy analysis method, the fracture toughness at nanoscale was estimated and its relationships with Young's modulus was quantified. It was observed that fracture toughness increases linearly with Young's modulus. This paper presents the results and main findings of this study.
The relationship between polycyclic aromatic hydrocarbons (PAHs) and hypertension remains a subject of debate. The aims of this study were to determine an association of concentrations of PAHs in housewives' hair with hypertension risk and the modification effect of single nucleotide polymorphisms (SNPs) related to Phase I metabolism of PAHs. We recruited 405 women for a cross-sectional study in Shanxi Province, China, including 170 with hypertension (the case group) and 235 without hypertension (the control group). We analyzed 26 individual PAHs in hair samples and the SNPs of the genes including cytochrome P450, family 1, subfamily A, polypeptide 1 (CYP1A1), CYP1A2, CYP1B1 and CYP2E1. Our results showed that seven PAHs in hair samples were measured with detection rate >70%. Only acenaphthylene was found to be associated with an increased risk of hypertension with adjustment for the potential confounders following Bonferroni correction, whereas others not. No SNPs of the concerned genes were found to be associated with the risk of hypertension. A multiple interaction effect of PAHs in housewives' hair and SNPs on hypertension risk was not observed. It was concluded that PAHs tended to contribute to the formation of hypertension. (C) 2016 Published by Elsevier Ltd.
Polycyclic aromatic hydrocarbons (PAHs), formed through incomplete combustion process, have adverse health effects. To investigate spatial distribution and sources of PAHs in North China, PAHs with passive sampling in 90 gridded sites during June to September in 2011 were analyzed. The average concentration of the sum of fifteen PAHs in North China is 220 +/- 14 ng/m(3), with the highest in Shanxi, followed by Shandong and Hebei, and then the Beijing-Tianjin area. Major sources of PAHs are identified for each region of North China, coke process for Shanxi, biomass burning for Hebei and Shandong, and coal combustion for Beijing-Tianjin area, respectively. Emission inventory is combined with back trajectory analysis to study the influence of emissions from surrounding areas at receptor sites. Shanxi and Beijing-Tianjin areas are more influenced by sources nearby while regional sources have more impact on Hebei and Shandong areas. Results from this study suggest the areas where local emission should be the major target for control and areas where both local and regional sources should be considered for PAH abatement in North China. (C) 2016 Elsevier B.V. All rights reserved.
China’s engagement with Indonesia from 1955 to 1959 was neither ideologically oriented nor realpolitik, but somewhere in between. It happened not only because of the changing domestic political situations or completely subject to the shifting international environment, but was also closely associated with intrinsic social and historical issues that transcended geographical, ideological and ethnic boundaries within and across the two nation-states. To some extent, this effective engagement was not a result of Indonesia’s leaning towards the left, but a reason for it—not in the sense of direct political intervention, but through the pursuit of common identity and interest, which significantly shaped the making of Indonesia’s Guided Democracy.
Although diversity–stability relationships have been extensively studied in local ecosystems, the global biodiversity crisis calls for an improved understanding of these relationships in a spatial context. Here, we use a dynamical model of competitive metacommunities to study the relationships between species diversity and ecosystem variability across scales. We derive analytic relationships under a limiting case; these results are extended to more general cases with numerical simulations. Our model shows that, while alpha diversity decreases local ecosystem variability, beta diversity generally contributes to increasing spatial asynchrony among local ecosystems. Consequently, both alpha and beta diversity provide stabilising effects for regional ecosystems, through local and spatial insurance effects respectively. We further show that at the regional scale, the stabilising effect of biodiversity increases as spatial environmental correlation increases. Our findings have important implications for understanding the interactive effects of global environmental changes (e.g. environmental homogenisation) and biodiversity loss on ecosystem sustainability at large scales.
Perceptual learning is often orientation and location specific, which may indicate neuronal plasticity in early visual areas. However, learning specificity diminishes with additional exposure of the transfer orientation or location via irrelevant tasks, suggesting that the specificity is related to untrained conditions, likely because neurons representing untrained conditions are neither bottom-up stimulated nor top-down attended during training. To demonstrate these top-down and bottom-up contributions, we applied a "continuous flash suppression" technique to suppress the exposure stimulus into sub-consciousness, and with additional manipulations to achieve pure bottom-up stimulation or top-down attention with the transfer condition. We found that either bottom-up or top-down influences enabled significant transfer of orientation and Vernier discrimination learning. These results suggest that learning specificity may result from under-activations of untrained visual neurons due to insufficient bottom-up stimulation and/or top-down attention during training. High-level perceptual learning thus may not functionally connect to these neurons for learning transfer.