Online platforms provide a public sphere for discussion, debate, and deliberation among citizens. The engagement of online deliberation enables participants to exchange viewpoints and form communities. This paper aims to explore the influencing factors on engagement level of online deliberation by examining the relationship between an initial post’s content features and length and the engagement of the discussion thread it initiates. We sampled 254 discussion threads with 254 initial posts and 2934 following posts and conducted quantitative and qualitative analysis of the posts. Findings show that initial posts which are longer and allocentric (as opposed to egocentric) would evoke longer following posts in a discussion. Different content type (social interaction, claim, argument) of initial posts would lead to significant different engagement, arguments would trigger higher level engagement (average posts per participant and average length of posts in discussions). Whether an initial post holds a clear position has no significant impact on discussion engagement. These findings contribute to a deeper understanding of online deliberation and its engagement and can be useful in promoting engagements in online deliberation.
This work gives an overview of integrated microwave to millimeter wave sensors and their applications covering frequencies from 28 GHz to 240 GHz. The designs are capable to address versatile application fields from liquid compound measurements to plaque detection and classification in arteries, glucose detection in continuous glucose monitoring (CGS) systems and virus detection in the context of respiratory diseases. The demonstrated approaches represent powerful and miniaturized solutions for highly sensitive contactless sensing of sample properties. Exploiting millimeter wave frequencies enables highest levels of integration to implement miniaturized sensing solutions including on-chip readout systems.
This paper presents the W-band noise performance of the 22nm FDSOI CMOS technology. In detail, the mm-wave thin-oxide MOSFETs is characterized comprehensively in term of device geometries using the tuner-based noise measurement approach. To aid the noise analysis and extraction, the following study adopts an accurate small-signal equivalent circuit model validated well with bias-dependence up to 110 GHz. The effects of back-gate bias to the overall noise performance are also addressed in this work. The test devices exhibit low noise figure in the full W-band 75-110 GHz. Besides, NF min of 2.8 dB and 3.6 dB is recorded at 94 GHz respectively for the n- and p-FETs with 18nm gate-length (N f = 32, W f = 1.0 µm). The result of this study indicates the comparable performance of the 22nm FDSOI technology to other candidates for W-band applications.
This paper presents a wideband integrated dielectric sensor with read-out circuit at 207-257 GHz in SiGe BiCMOS technology. The sensing element is equipped by a resonator that provides a bandpass frequency response which is varied in accordance to the carried permittivity change of the device under test. This variation can be sensed and recorded as the change of output voltage of an integrated 207-257 GHz 2 port vector network analyzer readout circuit. The demonstration of aforementioned readout system is verified by measuring the output of mixers as the reference, reflected and measured channel, and the uncalibrated S parameters of readout with different samples.
This paper investigates the applicability of a thick-oxide transistor from the 22FDX® for 5G NR sub-6 GHz front-end modules. Characterization and evaluation of the GlobalFoundries's FDSOI n-MOSFET regarding RF front-end figure-of-merits, such as output power, efficiency and linearity are discussed. Load-pull measurements are performed to extract the optimal performance. The test transistor delivers saturation power of +5.0 dBm and more than 65% of PAE while maintaining flat transducer gain of 10.2 ± 0.2 dB across the targeted frequency range for a 1.5 V single-ended class AB operation. Besides, the low PAE roll-off in term of reducing supply voltage and the particular 60% PAE at 10 dB output back-off indicate that the DUTs are well suitable for envelope tracking applications. Additional reliability tests at strong compression levels are conducted from which low performance degradation over time is observed even at 9 dB output compression.