摘要:
Interface modification engineering has been widely used as a flexible and effective method to optimize the performance of perovskite photovoltaic devices. Herein, we adopt NiCl2 as a modifier to passivate the interface at the electron transporting layer (ETL) and perovskite layer to drive high-efficiency perovskite solar cells (PSCs) with increased open circuit voltage (V-oc) and neglectable hysteresis. The devices based on SnO2/NiCl2 ETL achieved a high V-oc (1.17 V) and power conversion efficiency (PCE) (19.46%). The improvement is attributed to the increased energy level of the conduction band minimum (E-CBM) and reduced defect states by NiCl2 interface modification. Our findings provide an effective way to obtain higher V-oc and PCE values as well as neglectable hysteresis for planar PSCs.