科研论文/Publications

2021
Kong R, Sun Q, Cheng S, Fu J, Liu W, Letcher RJ, Liu C. Uptake, excretion and toxicity of titanate nanotubes in three stains of free-living ciliates of the genus Tetrahymena. Aquatic Toxicology [Internet]. 2021;233:105790. 访问链接Abstract
The potential exposure of titanate nanotubes (TNTs) to wildlife and humans may occur as a result of increased use and application as functional nanomaterials. However, there is a dearth of knowledge regarding the pathways of uptake and excretion of TNTs and their toxicity in cells. In this study, three strains of the Tetrahymena genus of free-living ciliates, including a wild type strain (SB210) and two mutant strains (SB255: mucocyst-deficient; NP1: temperature-sensitive “mouthless’’), were used to study the pathways of uptake and excretion and evaluate the cytotoxicity of TNTs. The three Tetrahymena strains were separately exposed to 0, 0.01, 0.1, 1 or 10 mg/L of TNTs, and cells were collected at different time points for quantification of intracellular TNTs (e.g., 5, 10, 20, 40, 60, 90 and 120 min) and evaluation of cytotoxicity (12 and 24 h). TNT contents in NP1 and SB255 were greater or comparable to the contents in SB210 while exposure to 10 mg/L TNTs in 120 min. Furthermore, exposure to 10 mg/L TNTs for 24 h caused greater decreases in cell density of NP1 (38.2 %) and SB255 (36.8 %) compared with SB210 (26.5 %) and upregulated the expression of caspase 15 in SB210. Taken together, our results suggested that TNT uptake by pinocytosis and excretion by exocytosis in Tetrahymena, and the exposure could cause cytotoxicity which can offer novel insights into the accumulation kinetics of nanotubes and even nanomaterials in single cell.
Zheng W, Liu Y, Liu W, Ji H, Li F, Shen C, Fang X, Li X, Duan X. A novel electrocatalytic filtration system with carbon nanotube supported nanoscale zerovalent copper toward ultrafast oxidation of organic pollutants. Water Research [Internet]. 2021;194:116961. 访问链接Abstract
In this study, we designed an integrated electrochemical filtration system for catalytic activation of peroxymonosulfate (PMS) and degradation of aqueous microcontaminants. Composites of carbon nanotube (CNT) and nanoscale zero valence copper (nZVC) were developed to serve as high-performance catalysts, electrode and filtration media simultaneously. We observed both radical and nonradical reaction pathways, which collectively contributed to the degradation of model pollutants. Congo red was completely removed via a single-pass through the nZVCCNT filter (τ <2 s) at neutral pH. The rapid kinetics of Congo red degradation were maintained across a wide pH range (from 3.0–7.0), in complicated matrixes (e.g., tap water and lake water), and for the degradation of a wide array of persistent organic contaminants. The superior activity of nZVCCNT stems from the boosted redox cycles of Cu2+/Cu+ in the presence of an external electric field. The flow-through design remarkably outperformed the conventional batch system due to the convection-enhanced mass transport. Mechanism studies suggested that the carbonyl group and electrophilic oxygen of CNT served as electron donor and electron acceptor, respectively, to activate PMS to generate •OH and 1O2 via one-electron transport. The electron-deficient Cu atoms are prone to react with PMS via surface hydroxyl group to produce reactive intermediates (Cu2+-O-O-SO3−), and then 1O2 will be generated by breaking the coordination bond of the metastable intermediate. The study will provide a green strategy for the remediation of organic pollution by a highly efficient and integrated system based on catalytic oxidation, electrochemistry, and nano-filtration techniques.
Shan Xue, Shaobin Sun WQTHWLCLHYWZ. Experimental and computational assessment of 1,4-Dioxane degradation in a photo-Fenton reactive ceramic membrane filtration process. Frontiers of Environmental Science & Engineering [Internet]. 2021;15:95. 访问链接
Sun X, He W, Yang T, Ji H, Liu W, Lei J, Liu Y, Cai Z. Ternary TiO2/WO3/CQDs nanocomposites for enhanced photocatalytic mineralization of aqueous cephalexin: Degradation mechanism and toxicity evaluation. Chemical Engineering Journal [Internet]. 2021;412:128679. 访问链接Abstract
A highly solar active nanocomposite with sheet-like WO3 skeleton and evenly loaded TiO2 and carbon quantum dots (CQDs) was synthesized by facile hydrothermal-calcining process, which showed 3.1- and 46.6- times activity on antibiotic (cephalexin) degradation than TiO2 and WO3, respectively. The construction of TiO2/WO3 heterojunction narrowed the band gap and facilitated the electrons-holes separation. The π conjugated CQDs was found to further improve the charge separation and extend the visible light response by photosensitization. However, the promoted charge separation predominantly contributed to the improved photocatalytic activity. The contributions of detected reactive species follows the order of: O2–>1O2>OH>h+. The cephalexin degradation mechanism and pathway were proposed based on DFT (density functional theory) calculation and experimental analysis. The photocatalytic mineralization efficiency can reach 92.4% in 4 h, indicating the efficient reduction of ecotoxicity of cephalexin and its intermediates. This new composite proved to have great potentials for emerging contaminants degradation in water.
Ma Z, Liu F, Liu N, Liu W, Tong M. Facile synthesis of sulfhydryl modified covalent organic frameworks for high efficient Hg(II) removal from water. Journal of Hazardous Materials [Internet]. 2021;405:124190. 访问链接Abstract
In present study, we fabricated sulfhydryl modified covalent organic frameworks (COF-‒SH) through one-step reaction for the removal of Hg(II) from water. Different techniques were employed to characterize the fabricated COFs. We find that COF-‒SH exhibits great adsorption capacity (1283 mg/g) towards Hg(II), which is over 25 times higher than that of COF-1 without ‒–SH (53.1 mg/g). COF‐SH has fast adsorption kinetics with the removal of 95% of 1000 μg/L Hg(II) within 30 min and over 99% after 2 h. Under a wide pH range (from 4 to 9), COF-‒SH exhibits high removal efficiencies (>99%). Moreover, COF‐SH can selectively adsorb Hg(II) in the presence of other metal cations up to 1000 μg/L. X-ray photoelectron spectroscopy analysis reveals the presence of high affinity between thiol-S atom and Hg(II), which is also responsible for the high selectivity towards Hg(II) compared with other cations. Because of the transfer from enol form to keto form during synthesis, COF‐SH exhibit remarkable stability during 10-cycle regeneration and reuse test. During utilization in wastewater extracted from Hg contaminated sludge, COF-‒SH displays high Hg(II) removal efficiency (>95%) under multiple coexisting ions conditions. The results suggest that COF-‒SH have great potential for Hg(II) removal from water under complex conditions.
Sun X, He W, Hao X, Ji H, Liu W, Cai Z. Surface modification of BiOBr/TiO2 by reduced AgBr for solar-driven PAHs degradation: Mechanism insight and application assessment. Journal of Hazardous Materials [Internet]. 2021;412:125221. 访问链接Abstract
A novel solar active AgBr/BiOBr/TiO2 catalyst was synthesized by a facile coprecipitation method for solar-driven water remediation. The synthesized material composed of flower-like TiO2 nanoparticles loaded on BiOBr nanosheets and with homogeneous surface distributed Ag/AgBr nanoparticles. The internal electric field between BiOBr/TiO2 heterojunction greatly facilitated the charge carrier migration; the introduction of narrow band gap semiconductors (AgBr and BiOBr) promoted the visible light adsorption; and the Ag/AgBr nanoparticles acted as photosensitizer to further improve the light utilization. The new material showed 7.6- and 4.0-times activity of pure TiO2 and BiOBr under solar light, and the contribution of reactive species on anthracene degradation followed the order of h+ >O2•−> •OH. The degradation mechanism and pathway were proposed based on intermediates analysis and DFT calculation. The QSAR analysis revealed that the environmental risks of contaminants were greatly reduced during the photocatalysis process but some intermediates were still toxic. The high photocatalytic activity, stability and adaptability all indicated that this new material owns great application potential for cost-effective photocatalytic remediation of persistent organic contaminants under solar light.
Zhao Z, Zhang W, Liu W, Li Y, Ye J, Liang J, Tong M. Activation of sulfite by single-atom Fe deposited graphitic carbon nitride for diclofenac removal: The synergetic effect of transition metal and photocatalysis. Chemical Engineering Journal [Internet]. 2021;407:127167. 访问链接Abstract
Herein, through supramolecular gel assisted pre-configuration, a novel bamboo-like porous graphitic carbon nitride (g-C3N4) deposited with single-atom Fe was successfully prepared and used for sulfite (S(IV)) activation. Unexpectedly, owing to the presence of single-atom Fe, hybrid material with only 2.5‰ of Fe exhibited 16 times higher S(IV) activation efficiency for diclofenac removal than pure g-C3N4 under visible light irradiation. Moreover, a synergetic effect of Fe and g-C3N4 was found to play the dominate role, and the synergetic factor was calculated to be 0.84. The synergetic mechanism mainly related to the generation of surface Fe-S(IV) complex, which could be affected by S(IV) species or the presence of H2PO4−. DCF removal was significantly enhanced at alkaline condition, but the enhancement was mainly attributed to photocatalysis but not synergetic effect. Decarboxylation, hydroxylation, chlorine abstraction and cleavages at bridging N atom were the main degradation pathways of DCF, which agreed well with Fukui index prediction. The toxicity of DCF was alleviated during the degradation process through successful mineralization of chlorine atoms.
Lai L, Ji H, Zhang H, Liu R, Zhou C, Liu W, Ao Z, Li N, Liu C, Yao G, et al. Activation of peroxydisulfate by V-Fe concentrate ore for enhanced degradation of carbamazepine: Surface ≡V(III) and ≡V(IV) as electron donors promoted the regeneration of ≡Fe(II). Applied Catalysis B: Environmental [Internet]. 2021;282:119559. 访问链接Abstract
V-Fe concentrate ore was applied to activate peroxydisulfate (PDS) for carbamazepine (CBZ) degradation. The excellent performance of V-Fe concentrate ore was mainly ascribed to the quick electron transfer from surface ≡V(III) and ≡V (IV) to ≡Fe(III) for ≡Fe(II) regeneration, which was confirmed by XPS and XAS analyses. This accelerated ≡Fe(II) regeneration could thus lead to quick formation of HO, SO4−, O2− and effective degradation of CBZ. The degradation rate of CBZ could be also expressed by a kinetic model, i.e., −d[CBZ]/dt = (0.83 mM-0.55 min-1(g/L)-0.65) [CBZ]0.29[PDS]1.26[V-Fe]0.65. Combined with the measured intermediates and the results of DFT calculation, CBZ degradation pathway was proposed systematically. Moreover, this catalyst displayed excellent recyclability and general applicability for a broad substrate scope. This study suggests low valent vanadium makes crucial contributions to the high activity of V-Fe-based catalysts, and improves the understanding of electron transfer mechanism between V and Fe in PDS activation process.
Chen L, Ji H, Qi J, Huang T, Wang C-C, Liu W. Degradation of acetaminophen by activated peroxymonosulfate using Co(OH)2 hollow microsphere supported titanate nanotubes: Insights into sulfate radical production pathway through CoOH+ activation. Chemical Engineering Journal [Internet]. 2021;406:126877. 访问链接Abstract
Pharmaceuticals and personal care products (PPCPs) are of great concern due to their increasing health effects, so advanced treatment technologies for PPCPs removal are urgently needed. In this study, titanate nanotubes decorated Co(OH)2 hollow microsphere (CoM/TNTs) composites were synthesized by a two-step solvothermal method, and used to activate peroxymonosulfate (PMS) through heterogenous catalysis for acetaminophen (ACE) degradation in water. The optimum material (CoM/TNTs0.5) activated PMS system exhibited high ACE removal efficiency and quick kinetic, as 93.0% ACE was degraded even within 10 min. The two components in CoM/TNTs showed a synergetic effect on PMS activation for radicals production: Co(OH)+ from CoM was the primary active species to active PMS, while TNTs could offer abundant –OH groups for Co(OH)+ formation. Density functional theory (DFT) calculation further interpreted the mechanism of Co(OH)+ for PMS activation by means of reaction potential energy surface (PES) analysis. Both the scavenger quenching tests and electron paramagnetic resonance analysis revealed that the sulfate radical (SO4-·) played a dominant role in ACE degradation. Moreover, DFT calculation also suggested that the ACE atoms with high Fukui index (f -) represented the active sites for electrophilic attack by SO4-·. The toxicity analysis based on quantitative structure-activity relationship (QSAR) verified the reduced toxicity of transformation products. Furthermore, CoM/TNTs also had good reusability and stability over five cycles. This work provides deep insights into the reaction mechanisms of radical production and organics attack in cobalt-based PMS activation system.
Zhao C, Wang J, Chen X, Wang Z, Ji H, Chen L, Liu W, Wang C-C. Bifunctional Bi12O17Cl2/MIL-100(Fe) composites toward photocatalytic Cr(VI) sequestration and activation of persulfate for bisphenol A degradation. Science of The Total Environment [Internet]. 2021;752:141901. 访问链接Abstract
Bifunctional Bi12O17Cl2/MIL-100(Fe) composite (BMx) was firstly constructed via facile ball-milling method. The optimal BM200 was highly efficient for Cr(VI) sequestration and activation of persulfate (PS) for bisphenol A (BPA) decomposition under white light illumination, which was much more remarkable than the pristine MIL-100(Fe) and Bi12O17Cl2, respectively. Furthermore, the photocatalytic reduction efficiency can be significantly improved via the addition of some green small organic acids (SOAs). As well, the BPA degradation can be achieved over an extensive initial pH range of 3.0–11.0. When the PS concentration increased to more than 2.0 mM, the BPA degradation efficiency decreased due to the SO4−• self-scavenging effect. It was also found that the co-existence of inorganic anions like H2PO4−, HCO3−, SO42−, Cl− and NO3− could decelerate the BPA degradation. The excellent photocatalytic Cr(VI) reduction and persulfate activation performances originated from both MIL-100(Fe) with excellent PS activation ability and Bi12O17Cl2 with a favorable band position, which not only enabled the efficient separation of charges but also accelerated the formation of SO4−• radicals. The BM200 displayed prominent stability and recyclability. More importantly, the credible degradation pathway was proposed based on UHPLC-MS analysis and DFT calculation. This research revealed that the Fe-based MOFs/bismuth-rich bismuth oxyhalides (BixOyXz, X = Cl, Br and I) composites possessed great potential in wastewater remediation.
Pan F, Ji H, Du P, Huang T, Wang C, Liu W. Insights into catalytic activation of peroxymonosulfate for carbamazepine degradation by MnO2 nanoparticles in-situ anchored titanate nanotubes: Mechanism, ecotoxicity and DFT study. Journal of Hazardous Materials [Internet]. 2021;402:123779. 访问链接Abstract
Developing efficient pharmaceuticals and personal care products (PPCPs) degradation technologies is of scientifical and practical importance to restrain their discharge into natural water environment. This study fabricated and applied a composite material of amorphous MnO2 nanoparticles in-situ anchored titanate nanotubes (AMnTi) to activate peroxymonosulfate (PMS) for efficient degradation and mineralization of carbamazepine (CBZ). The degradation pathway and toxicity evolution of CBZ during elimination were deeply evaluated through produced intermediates identification and theoretical calculations. AMnTi with a composition of (0.3MnO2)•(Na1.22H0.78Ti3O7) offered high activation efficiency of PMS, which exhibited 21- and 3-times degradation rate of CBZ compared with the pristine TNTs and MnO2, respectively. The high catalytic activity can be attributed to its unique structure, leading to a lattice shrinkage and small pores to confine the PMS molecule onto the interface. Therefore, efficient charge transfer and catalytic activation through MnOTi linkage occurred, and a MnTi cycle mediating catalytic PMS activation was found. Both hydroxyl and sulfate radicals played key roles in CBZ degradation. Theoretical calculations, i.e., density functional theory (DFT) and computational toxicity calculations, combined with intermediates identification revealed that CBZ degradation pathway was hydroxyl addition and NC cleavage. CBZ degradation in this system was also a toxicity-attenuation process.
Ji H, Wang T, Huang T, Lai B, Liu W. Adsorptive removal of ciprofloxacin with different dissociated species onto titanate nanotubes. Journal of Cleaner Production [Internet]. 2021;278:123924. 访问链接Abstract
Exploring the specific characteristics of pharmaceuticals and personal care products (PPCPs) via adsorption and degradation are scientific and practical significance to control their release to water matrix. In this work, a good adsorbent and ion-exchange material, i.e., titanate nanotubes (TNTs), was employed for adsorption of ciprofloxacin (CIP, a model PPCPs). The adsorption behaviors and mechanisms of CIP with different dissociated species by TNTs were studied through both experimental and theoretical calculations. The multilayered TNTs with high BET surface area (272.3 m2/g) and large pore volume (1.26 cm3/g) exhibited good adsorption property for CIP. The CIP species (i.e., CIP+, CIP±, CIP−) at various pH exhibited significantly different adsorption favorability. Adsorption kinetics and isotherms data revealed that TNTs offered the high uptake for CIP+ (Qmax = 464.47 μmol/g or 153.90 mg/g at pH 5) than CIP± and CIP−. Characterizations indicated the formation of Ti−O−N linkage between CIP molecules and TNTs after adsorption, suggesting the chemical interaction between CIP and TNTs. Density functional theory (DFT) calculations reveal variation on pH affects the protonation/deprotonation state of CIP, and then changes the distribution of molecular orbitals and the electrostatic potential (ESP) energy of CIP. ESP follows the trend as: CIP+ (180.57 kcal/mol) > CIP± (146.78 kcal/mol) > CIP− (12.30 kcal/mol), indicating the side of piperazine ring in CIP oriented to TNTs dominates the CIP adsorption. The integrated experimental and theoretical results, for the first time, suggest that ESP energy can serve as the indicator and predictor of adsorption ability for the PPCPs molecules with various speciation, and can help to deeply describe the adsorption mechanism of PPCPs. In addition, TNTs have great application for the removal of PPCPs through adsorption in practical wastewater treatment area.
Duan J, Ji H, Xu T, Pan F, Liu X, Liu W, Zhao D. Simultaneous adsorption of uranium(VI) and 2-chlorophenol by activated carbon fiber supported/modified titanate nanotubes (TNTs/ACF): Effectiveness and synergistic effects. Chemical Engineering Journal [Internet]. 2021;406:126752. 访问链接Abstract
Mixtures of U(VI) and chlorinated compounds have been detected at many radionuclides-contaminated sites. Yet, simultaneous removal of the two classes of contaminants is still challenging. Herein, we prepared a new type of composite material (TNTs/ACF) based on commercial TiO2 and activated carbon fiber (ACF) through a hydrothermal approach and tested it for simultaneous removal of U(VI) and 2-Chlorophenol (2-CP). The hydrothermal treatment converted TiO2 into titanate nanotubes (TNTs), a cation exchanger, which are not only supported by bulk ACF, but also modified by carbon nanoparticles. TNTs/ACF exhibited fast sorption kinetics and high adsorption capacities for both U(VI) (Langmuir Qmax = 188.0 mg/g) and 2-CP (Qmax = 122.1 mg/g). Moreover, higher adsorption was observed when both solutes are co-present than in the single-solute systems. An extended dual-mode model, which considers adsorption and other specific mechanisms well interpreted the adsorption isotherms. The optimal working pH for U(VI) ranged from 6.0 to 8.0, while the sorption of 2-CP remained high over a broader pH range. The presence of 1.0–10.0 mg/L humic acid as TOC increased the adsorption of both chemicals. The key adsorption mechanism for U(VI) is ion-exchange at the –O− functional sites in the interlayers of TNTs, while 2-CP was taken up via hydrophobic interactions with ACF and capillary condensation. The adsorption synergy of U(VI) and 2-CP in the binary systems resulted from the complexation between U(VI) ions and phenolic groups of 2-CP and the cation–π interactions. TNTs/ACF appears promising for simultaneous removal of radionuclides and chlorinated chemicals from contaminated water.
2020
Huang T, Pan B, Ji H, Liu W. Removal of 17β-Estradiol by Activated Charcoal Supported Titanate Nanotubes (TNTs@AC) through Initial Adsorption and Subsequent Photo-Degradation: Intermediates, DFT calculation, and Mechanisms. Water [Internet]. 2020;12. 访问链接Abstract
A low-cost composite of activated charcoal supported titanate nanotubes (TNTs@AC) was developed via the facile hydrothermal method to remove the 17&beta;-estradiol (E2, a model of pharmaceutical and personal care products) in water matrix by initial adsorption and subsequent photo-degradation. Characterizations indicated that the modification occurred, i.e., the titanate nanotubes would be grafted onto the activated charcoal (AC) surface, and the micro-carbon could modify the tubular structure of TNTs. E2 was rapidly adsorbed onto TNTs@AC, and the uptake reached 1.87 mg/g from the dual-mode model fitting. Subsequently, the adsorbed E2 could be degraded 99.8% within 2 h under ultraviolet (UV) light irradiation. TNTs@AC was attributed with a unique hybrid structure, providing the hydrophobic effect, &pi;&minus;&pi; interaction, and capillary condensation for E2 adsorption, and facilitating the electron transfer and then enhancing photocatalytic ability for E2-degradation. In addition, the removal mechanism of E2 was elucidated through the density functional theory calculation. Our study is expected to provide a promising material for environmental application.
Li S, Huang T, Du P, Liu W, Hu J. Photocatalytic transformation fate and toxicity of ciprofloxacin related to dissociation species: Experimental and theoretical evidences. Water Research [Internet]. 2020;185:116286. 访问链接Abstract
Chemical speciation of ionizable antibiotics greatly affects its photochemical kinetics and mechanisms; however, the mechanistic impact of chemical speciation is not well understood. For the first time, the impact of different dissociation species (cationic, zwitterionic and anionic forms) of ciprofloxacin (CIP) on its photocatalytic transformation fate was systematically studied in a UVA/LED/TiO2 system. The dissociation forms of CIP at different pH affected the photocatalytic degradation kinetics, transformation products (TPs) formation as well as degradation pathways. Zwitterionic form of CIP exhibited the highest degradation rate constant (0.2217 ± 0.0179 min−1), removal efficiency of total organic carbon (TOC) and release of fluoride ion (F−). Time-dependent evolution profiles on TPs revealed that the cationic and anionic forms of CIP mainly underwent piperazine ring dealkylation, while zwitterionic CIP primarily proceeded through defluorination and piperazine ring oxidation. Moreover, density functional theory (DFT) calculation based on Fukui index well interpreted the active sites of different CIP species. Potential energy surface (PES) analysis further elucidated the reaction transition state (TS) evolution and energy barrier (ΔEb) for CIP with different dissociation species after radical attack. This study provides deep insights into degradation mechanisms of emerging organic contaminants in advanced oxidation processes associated to their chemical speciation.
Zhao X, Liu W, Cai Z, Fu J, Duan J, Zhao D, Bozack M, Feng Y. Reductive immobilization of uranium by stabilized zero-valent iron nanoparticles: Effects of stabilizers, water chemistry and long-term stability. Colloids and Surfaces A: Physicochemical and Engineering Aspects [Internet]. 2020;604:125315. 访问链接Abstract
Uranium is one of the most commonly detected radionuclides in the environment. Of the two most predominant oxidation states, U(VI) is much more soluble, mobile and toxic than U(IV). Consequently, converting U(VI) to U(IV) can facilitate the removal of U from water and reduce its mobility and biological exposure. In this work, stabilized zero-valent iron (ZVI) nanoparticles were prepared using starch or carboxymethyl cellulose (CMC) as stabilizers and then tested for reductive removal of U(VI) from simulated groundwater. Nearly 100% removal of U(VI) (initial U = 25 mg/L) was achieved using CMC-stabilized ZVI (Fe = 35 mg/L) at pH 6. In pH range of 6–9, the lower pH favored the reaction. CMC-ZVI nanoparticles presented better deliverability than starch-ZVI, while bare ZVI nanoparticles was almost trapped in the soil column. CMC-ZVI worked effectively in the presence of a model humic acid (up to 10 mg/L as TOC) and bicarbonate (1 mM), though higher dosages of the ligands inhibited U(VI) removal. After treatment, no re-mobilization of U was detected when aged for 6 months under anoxic conditions and the addition of strong ligands only remobilized U(VI). When exposed to oxic conditions, the immobilized U will be partially oxidized and remobilized due to the ingress of atmospheric O2 and CO2. In terms of toxicity reduction, the ZVI treated U had almost no inhibition for natural bacteria activity, while dissolved U(VI) showed significant inhibitive effects. The CMC-ZVI nanoparticles may serve as effective reactive materials to facilitate immobilization of U(VI) in groundwater, which in turn can greatly mitigate the human exposure and toxic effects of U on biota.
Li H, Ji H, Zhang R, Zhang W, Pan B, Liu W, Sun W. Hydrogen bonding rather than cation bridging promotes graphene oxide attachment to lipid membranes in the presence of heavy metals. Environ. Sci.: Nano [Internet]. 2020:-. 访问链接Abstract
Interactions between graphene oxide (GO) and cell membranes play a crucial role in the nanotoxicity of GO toward organisms. However, little is known about interactions of GO with lipid membranes in the presence of heavy metals. This study investigated the attachment of GO and adsorption of heavy metals onto simulated cell membranes (spherical supported lipid bilayers, SSLBs) formed by cationic, neutral and anionic lipids, i.e., SSLB(+), SSLB(0) and SSLB(−), using batch experiments, density functional theory (DFT) calculations, and spectroscopic analyses. In the binary systems, the SSLBs bind with GO through hydrogen binding and with heavy metals via complexation. The attachment of GO or adsorption of heavy metals onto SSLBs decreased in the order SSLB(−) > SSLB(0) > SSLB(+), largely controlled by the type and number of functional groups in the SSLBs. Evidence from batch experiments, DFT calculations and spectroscopic analyses confirmed that in the ternary system GO first binds with metals, and then the GO–metal complexes attach to SSLBs via hydrogen bonding through GO rather than cation bridging through metals. Moreover, metal adsorption onto GO strengthens hydrogen bonding by withdrawing electrons from the GO surface. Therefore, in the ternary system, heavy metals promoted the GO attachment to SSLBs. However, GO suppressed the adsorption of heavy metals onto SSLBs by blocking the adsorption sites via steric hindrance. This study highlighted the importance of molecular interactions on assessing the nanotoxicity of GO to cells in the coexistence of heavy metals.
Li P, Zhou Z, Wang Q, Guo M, Chen S, Low J, Long R, Liu W, Ding P, Wu Y, et al. Visible-Light-Driven Nitrogen Fixation Catalyzed by Bi5O7Br Nanostructures: Enhanced Performance by Oxygen Vacancies. Journal of the American Chemical Society [Internet]. 2020;142:12430-12439. 访问链接Abstract
Photocatalytic nitrogen fixation represents a green alternative to the conventional Haber–Bosch process in the conversion of nitrogen to ammonia. In this study, a series of Bi5O7Br nanostructures were synthesized via a facile, low-temperature thermal treatment procedure, and their photocatalytic activity toward nitrogen fixation was evaluated and compared. Spectroscopic measurements showed that the tubular Bi5O7Br sample prepared at 40 °C (Bi5O7Br-40) exhibited the highest electron-transfer rate among the series, producing a large number of O2.– radicals and oxygen vacancies under visible-light photoirradiation and reaching a rate of photocatalytic nitrogen fixation of 12.72 mM·g–1·h–1 after 30 min of photoirradiation. The reaction dynamics was also monitored by in situ infrared measurements with a synchrotron radiation light source, where the transient difference between signals in the dark and under photoirradiation was analyzed and the reaction pathway of nitrogen fixation was identified. This was further supported by results from density functional theory calculations. The reaction energy of nitrogen fixation was quantitatively estimated and compared by building oxygen-enriched and anoxic models, where the change in the oxygen vacancy concentration was found to play a critical role in determining the nitrogen fixation performance. Results from this study suggest that Bi5O7Br with rich oxygen vacancies can be used as a high-performance photocatalyst for nitrogen fixation.
Li F, Wei Z, He K, Blaney L, Cheng X, Xu T, Liu W, Zhao D. A concentrate-and-destroy technique for degradation of perfluorooctanoic acid in water using a new adsorptive photocatalyst. Water Research [Internet]. 2020;185:116219. 访问链接Abstract
Per- and polyfluoroalkyl substances (PFAS) have emerged as a major concern in aquatic systems worldwide due to their widespread applications and health concerns. Perfluorooctanoic acid (PFOA) is one of the most-detected PFAS. Yet, a cost-effective technology has been lacking for the degradation of PFAS due to their resistance to conventional treatment processes. To address this challenge, we prepared a novel adsorptive photocatalyst, referred to Fe/TNTs@AC, based on low-cost commercial activated carbon (AC) and TiO2. The composite material exhibited synergistic adsorption and photocatalytic activity and enabled a novel “concentrate-&-destroy” strategy for rapid and complete degradation of PFOA in water. Fe/TNTs@AC was able to adsorb PFOA within a few minutes, thereby effectively concentrating the target contaminant on the photoactive sites. Subsequently, Fe/TNTs@AC was able to degrade >90% of PFOA that was preconcentrated on the solid in 4 h under UV irradiation (254 nm, 21 mW cm‒2), of which 62% was completely mineralized to F−. The efficient photodegradation also regenerated Fe/TNTs@AC, eliminating the need for expensive chemical regenerants, and after six cycles of adsorption/photodegradation, the material showed no significant drop in adsorption capacity or photocatalytic activity. Simulations based on the density functional theory (DFT) revealed that Fe/TNTs@AC adsorbs PFOA in the side-on parallel mode, facilitating the subsequent photocatalytic degradation of PFOA. According to the DFT analysis, scavenger tests, and analysis of degradation intermediates, PFOA decomposition is initiated by direct hole oxidation, which activates the molecule and leads to a series of decarboxylation, C–F bond cleavage, and chain shortening reactions. The innovative “concentrate-&-destroy” strategy may significantly advance conventional adsorption or photochemical treatment of PFAS-contaminated water and holds the potential to degrade PFOA, and potentially other PFAS, more cost-effectively.
Zhao Z, Zhang W, Liu W, Li Y, Ye J, Liang J, Tong M. Single-atom silver induced amorphization of hollow tubular g-C3N4 for enhanced visible light-driven photocatalytic degradation of naproxen. Science of The Total Environment [Internet]. 2020;742:140642. 访问链接Abstract
In this work, a novel strategy for building single-atom silver-induced amorphous graphitic carbon nitride (g-C3N4) with a hollow tubular morphology is developed. By forming a tubular supramolecular gel, silver is successfully isolated by the nitrogen atoms in both melamine and nitrate anions, impeding agglomeration in the subsequent thermal polymerization. The high density of single-atom-dispersed silver (atomic ratio up to 11.6%) selectively breaks the hydrogen bonds in layered g-C3N4, leading to a fully amorphous structure. Silver-induced full amorphization not only enhances the visible light absorption of g-C3N4 but also accelerates charge transfer, endowing the as-prepared photocatalyst having the optimal silver content with 52 times higher surface area specific naproxen (NPX) removal activity than pure g-C3N4. Both density functional theory (DFT) calculations and steric effects are applied to explain the degradation pathway of NPX. The toxicity of NPX is reduced by sufficient irradiation. This work provides useful insights into the design and morphology control of single metal ion-dispersed g-C3N4 for environmental applications.

Pages