Li L, Hu J, Ho YS.
Global Performance and Trend of QSAR/QSPR Research: A Bibliometric Analysis. Mol InformMol Inform. 2014;33:655-68.
AbstractA bibliometric analysis based on the Science Citation Index Expanded was conducted to provide insights into the publication performance and research trend of quantitative structure-activity relationship (QSAR) and quantitative structure-property relationship (QSPR) from 1993 to 2012. The results show that the number of articles per year quadrupled from 1993 to 2006 and plateaued since 2007. Journal of Chemical Information and Modeling was the most prolific journal. The internal methodological innovations in acquiring molecular descriptors and modeling stimulated the articles' increase in the research fields of drug design and synthesis, and chemoinformatics; while the external regulatory demands on model validation and reliability fueled the increase in environmental sciences. "Prediction endpoints", "statistical algorithms", and "molecular descriptors" were identified as three research hotspots. The articles from developed countries were larger in number and more influential in citation, whereas those from developing countries were higher in output growth rates.
Wu J, Fang X, Martin JW, Zhai Z, Su S, Hu X, Han J, Lu S, Wang C, Zhang J, et al. Estimated emissions of chlorofluorocarbons, hydrochlorofluorocarbons, and hydrofluorocarbons based on an interspecies correlation method in the Pearl River Delta region, China. Sci Total EnvironSci Total Environ. 2014;470-471:829-34.
AbstractAlthough many studies have been conducted in recent years on the emissions of chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs), and hydrofluorocarbons (HFCs) at the large regional (such as East Asia) and national scales, relatively few studies have been conducted for cities or metropolitan areas. In this study, 192 air samples were collected in the Pearl River Delta (PRD) region of China in November 2010. The atmospheric mixing ratios of six halocarbons were analyzed, including trichlorofluoromethane (CFC-11, CCl3F), dichlorodifluoromethane (CFC-12, CCl2F2), monochlorodifluoromethane (HCFC-22, CHClF2), 1,1-dichloro-1-fluoroethane (HCFC-141b, CH3CCl2F), 1-dichloro-1,1-fluoroethane (HCFC-142b, CH3CClF2), and 1,1,1,2-tetrafluoroethane (HFC-134a, CH2FCF3), and their emissions were estimated based on an interspecies correlation method using HCFC-22 as the reference species. The results showed no significant change in the regional concentration and emission of CFC in the past 10years, suggesting that the continuous regional emission of CFC has had no significant effect on the CFC regional concentration in the PRD region. Concentrations and emissions of HCFCs and HFCs are significantly higher compared to previous research in the PRD region (P<0.05). The largest emission was for HCFC-22, most likely due to its substitution for CFC-12 in the industrial and commercial refrigeration subsector, and the rapid development of the room air-conditioner and extruded polystyrene subsectors. The PRD's ODP-weighted emissions of the target HCFCs provided 9% (7-12%) of the national emissions for the corresponding species. The PRD's GWP-weighted emissions of the target HCFCs and HFC-134a account for 10% (7-12%) and 8% (7-9%), respectively, of the national emissions for the corresponding species, and thus are important contributions to China's total emissions.
Wu J, Martin JW, Zhai Z, Lu K, Li L, Fang X, Jin H, Hu J, Zhang J.
Airborne trifluoroacetic acid and its fraction from the degradation of HFC-134a in Beijing, China. Environ Sci TechnolEnviron Sci Technol. 2014;48:3675-81.
AbstractTrifluoroacetic acid (TFA) has been attracting increasing attention worldwide because of its increased environmental concentrations and high aquatic toxicity. Atmospheric deposition is the major source of aquatic TFA, but only a few studies have reported either air concentrations or deposition fluxes for TFA. This is the first study to report the atmospheric concentrations of TFA in China, where an annular denuder and filter pack collection system were deployed at a highly urbanized site in Beijing. In total, 144 air samples were collected over the course of 1 year (from May 2012 to April 2013) and analyzed directly using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) or following derivatization by gas chromatography-mass spectrometry (GC-MS). The annual mean atmospheric concentration of TFA was 1580 +/- 558 pg/m(3), higher than the previously reported annual mean levels in Germany and Canada. For the first time, it was demonstrated that maximum concentrations of TFA were frequently observed in the afternoon, following a diurnal cycle and suggesting that a major source of airborne TFA is likely degradation of volatile precursors. Using a deposition model, the annual TFA deposition flux was estimated to be 619 +/- 264 mug m(-2) year(-1). Nevertheless, a box model estimated that the TFA deposition flux from the degradation of HFC-134a contributed only 14% (6-33%) to the total TFA deposition flux in Beijing. Source analysis is quite important for future TFA risk predictions; therefore, future research should focus on identifying additional sources.
Fang X, Miller BR, Su S, Wu J, Zhang J, Hu J.
Historical emissions of HFC-23 (CHF3) in China and projections upon policy options by 2050. Environ Sci TechnolEnviron Sci Technol. 2014;48:4056-62.
AbstractTrifluoromethane (CHF3, HFC-23) is one of the hydrofluorocarbons (HFCs) regulated under the Kyoto Protocol with a global warming potential (GWP) of 14 800 (100-year). China's past, present, and future HFC-23 emissions are of considerable interest to researchers and policymakers involved in climate change. In this study, we compiled a comprehensive historical inventory (1980-2012) and a projection (2013-2050) of HFC-23 production, abatements, and emissions in China. Results show that HFC-23 production in China increased from 0.08 +/- 0.05 Gg/yr in 1980 to 15.4 +/- 2.1 Gg/yr (228 +/- 31 Tg/yr CO2-eq) in 2012, while actual HFC-23 emissions reached a peak of 10.5 +/- 1.8 Gg/yr (155 +/- 27 Tg/y CO2-eq) in 2006, and decreased to a minimum of 7.3 +/- 1.3 Gg/yr (108 +/- 19 Tg/yr CO2-eq) in 2008 and 2009. Under the examined business-as-usual (BAU) scenario, the cumulative emissions of HFC-23 in China over the period 2013-2050 are projected to be 609 Gg (9015 Tg CO2-eq which approximates China's 2012 CO2 emissions). Currently, China's annual HFC-23 emissions are much higher than those from the developed countries, while it is estimated that by year 2027, China's historic contribution to the global atmospheric burden of HFC-23 will have surpassed that of the developed nations under the BAU scenario.
Han J, Li L, Su S, Wu J, Fang X, Jia S, Zhang J, Hu J.
Estimated HCFC-142b emissions in China: 2000–2050. Chinese Science BulletinChinese Science Bulletin. 2014;59:3046-3053.