科研成果 by Year: 2015

2015
Li YF, Ma WL, Yang M. Prediction of gas/particle partitioning of polybrominated diphenyl ethers (PBDEs) in global air: A theoretical study. Atmospheric Chemistry and PhysicsAtmospheric Chemistry and Physics. 2015;15:1669-1681.
Li L, Zhai Z, Liu J, Hu J. Estimating industrial and domestic environmental releases of perfluorooctanoic acid and its salts in China from 2004 to 2012. ChemosphereChemosphere. 2015;129:100-109.
Li L, Liu J, Hu J. Global inventory, long-range transport and environmental distribution of dicofol. Environ Sci TechnolEnviron Sci Technol. 2015;49:212-22.Abstract
The uncertainties on whether dicofol can be identified as a persistent organic pollutant (POP) in terms of its long-range transport (LRT) potential and global distribution, are always a controversial topic during international regulation deliberations. The lack of monitoring data in remote background regions necessitates a model-based evaluation approach for assessing the global distribution of dicofol. However, few model simulations are available at present, as there is no inventory available for global historical usage of dicofol that has sufficiently high spatial and temporal resolution. To describe the current status of global emission, we first developed an inventory of global dicofol usage for the period of 2000-2012 at 1 degrees x 1 degrees latitude/longitude resolution. We then assessed the LRT potential of dicofol by calculating its Arctic Contamination Potential using the Globo-POP model. In addition, we simulated the global mass distribution and the fate of dicofol in the environment using the BETR-Global model at 15 degrees x 15 degrees latitude/longitude resolution. Our estimated inventory established that over the period of 13 years, a total of 28.2 kilo tonnes (kt) of dicofol was applied and released into the environment. East and Southeast Asia, the Mediterranean Coast, and Northern and Central America were identified as hotspots of usage and release. Dicofol exhibited a higher Arctic Contamination Potential than several confirmed Arctic contaminants, and a larger current volume of consumption than most existing POPs. The results of our BETR-Global simulation suggest that (i) dicofol can indeed be transported northward, most likely driven by both atmospheric and oceanic advections from source regions at midlatitudes, and (ii) dicofol will be enriched in remote background regions. Continuous use of dicofol in source regions will result in exposure both locally and in remote regions, and the examination of the potential for adverse effects is therefore of paramount importance. Proactive restrictions at the international level may be warranted.
Fang X, Stohl A, Yokouchi Y, Kim J, S Li, Saito T, Park S, Hu J. Multiannual top-down estimate of HFC-23 emissions in East Asia. Environ Sci TechnolEnviron Sci Technol. 2015;49:4345-53.Abstract
Trifluoromethane (CHF3, HFC-23), with a 100-year global warming potential (GWP) of 12400, is regulated under the Kyoto Protocol. HFC-23 emissions in East Asia, especially in China, are currently thought to represent the majority of global HFC-23 emissions. This study provides both a bottom-up emission inventory and the multiannual top-down estimate of HFC-23 emissions in East Asia during 2007-2012. The new bottom-up inventory yields improved simulated HFC-23 mixing ratios compared to previous bottom-up inventories. The top-down estimate uses inverse modeling to further improve the model-measurement agreement. Results show that China contributed 94-98% of all HFC-23 emissions in East Asia. Annual a posteriori emissions from China were around 6.3 Gg/yr during the period 2007-2010 after which they increased to 7.1 +/- 0.7 Gg/yr in 2011 and 8.8 +/- 0.8 Gg/yr in 2012. For the first time, this study also provides a top-down estimate of HFC-23/HCFC-22 (chlorodifluoromethane, CHClF2) coproduction ratios in non-CDM (Clean Development Mechanism) HCFC-22 production plants as well as in all HCFC-22 production plants in China.
苏燊燊, 赵锦洋, 胡建信. 中国电力行业1990-2050年温室气体排放研究. 气候变化研究进展气候变化研究进展. 2015;11:353-362.Abstract
摘 要: 采用《国家温室气体清单指南》推荐方法,估算了1990—2014年中国各省份电力行业的温室气体排放水平。研究时期内,中国电力行业排放增长6.2倍,达到38.0(95%信度区间为31.3~46.0)亿tCO2当量(CO2-eq),而各省排放水平及其变化趋势呈现出显著的差异,排放重心向西部省份转移,内蒙古成为全国电力行业排放最大的省份。同时基于未来电源结构的发展方案,预测了2015—2050年不同电力需求情景下电力行业温室气体排放的变化趋势和达到排放峰值情况。电力需求高增速情景下2034年达到排放峰值59.5(49.3~71.8)亿t CO2-eq,而低增速情景可以提前至2031年达到排放峰值,且峰值水平下降7.7(6.3~9.3)亿tCO2-eq。
胡建信;李力;黄俊;刘建国. PFOA/PFO环境风险管控需加快进程. 2015:002.
胡建信. 《维也纳公约》缔结30年来中国对保护臭氧层的贡献与成果. 世界环境世界环境. 2015:30-31.Abstract
摘 要: 1974年,加利福尼亚大学欧文分校的舍伍德·罗兰和马里奥·莫利纳在《自然》杂志上发表文章,阐述了人类大量生产和使用的全氟氯烃(CFCs)因其大气环境中寿命长,可以经过几年到十几年的迁移到达同温层(平流层),并在短波紫外线UV—C的照射下发生光解,释放出游离氯自由基;后者发生链式反应促使臭氧(O3)转化为氧气(O2),从而造成平流层臭氧耗损。
韩佳蕊, 李力, 方雪坤, 吴婧, 苏燊, 温新元, 吴宇声, 胡建信. 基于物种间浓度相关法估算2012年中国HCFC-142b排放量. 北京大学学报自然科学版北京大学学报自然科学版. 2015;51:123-130.Abstract
摘 要: 利用北京大学定点较高时间频率浓度监测数据,甄选HCFC-22为估算HCFC-142b排放量适宜的参考物质,分析认为以往基于背景地区数据的研究中普遍采用的参考物质CO不适用于利用城市地区大气样品进行物种间浓度相关法研究。根据全国四城市(北京、杭州、兰州和广州)四季的HCFC-142b及其参考物质浓度监测数据,通过物种间浓度相关法计算2012年中国HCFC-142b排放量为16.24(13.90~18.58)kt,相当于1.06 ODP kt和37 Tg CO2-eq,占2012年中国HCFCs排放总量的9.78%(ODP),占全球HCFC-142b排放总量的30.57%。中国HCFC-142b的减排淘汰工作将在未来中国和全球成功履约中占据重要地位。
别鹏举, 苏燊燊, 李志方, 贾胜兰, 张兆阳, 方雪坤, 胡建信. 中国汽车空调行业淘汰HFC-134a技术选择与政策建议. 气候变化研究进展气候变化研究进展. 2015;11:363-370.Abstract
摘 要: HFC-134a在中国汽车空调行业广泛使用,并已成为中国目前排放量最大的有意生产和使用的HFCs之一。欧盟和美国已经颁布相关法律法规控制包括HFC-134a在内的含氟温室气体的消费和排放。如果选择低全球变暖潜势(GWP)替代技术,中国汽车空调行业将具有巨大的温室气体减排潜力;伴随着汽车空调系统需求呈现的多样化,现有替代技术如HFO-124yf、HFC-152a、CO2等各有优势和不足,需要综合考虑它们的经济成本、市场化可行性以及安全风险和环保标准;制定HFC-134a淘汰政策、积极推进替代技术的研究和应用,以积极响应国际社会加快淘汰HFC-134a的行动,也是落实2014年《中美气候变化联合声明》中提出的关于削减全球氢氟碳化物的行动。
Zhai Z, Wu J, Hu X, Li L, Guo J, Zhang B, Hu J, Zhang J. A 17-fold increase of trifluoroacetic acid in landscape waters of Beijing, China during the last decade. ChemosphereChemosphere. 2015;129:110-117.
Wang Z, Yan H, Fang X, Gao L, Zhai Z, Hu J, Zhang B, Zhang J. Past, present, and future emissions of HCFC-141b in China. Atmospheric EnvironmentAtmospheric Environment. 2015;109:228-233.
Su S, Fang X, Li L, Wu J, Zhang J, Xu W, Hu J. HFC-134a emissions from mobile air conditioning in China from 1995 to 2030. Atmospheric EnvironmentAtmospheric Environment. 2015;102:122-129.