科研成果 by Year: 2021

2021
Rapid increase in dichloromethane emissions from China inferred through atmospheric observations. NATURE COMMUNICATIONS [Internet]. 2021;2021(12):7279. 访问链接Abstract
With the successful implementation of the Montreal Protocol on Substances that Deplete the Ozone Layer, the atmospheric abundance of ozone-depleting substances continues to decrease slowly and the Antarctic ozone hole is showing signs of recovery. However, growing emissions of unregulated short-lived anthropogenic chlorocarbons are offsetting some of these gains. Here, we report an increase in emissions from China of the industrially produced chlorocarbon, dichloromethane (CH2Cl2). The emissions grew from 231 (213–245) Gg yr−1 in 2011 to 628 (599–658) Gg yr−1 in 2019, with an average annual increase of 13 (12–15) %, primarily from eastern China. The overall increase in CH2Cl2 emissions from China has the same magnitude as the global emission rise of 354 (281−427) Gg yr−1 over the same period. If global CH2Cl2 emissions remain at 2019 levels, they could lead to a delay in Antarctic ozone recovery of around 5 years compared to a scenario with no CH2Cl2 emissions.
深化消耗臭氧层物质和氢氟碳化物环境管理,协同保护臭氧层和应对气候变化. 中国环境报 [Internet]. 2021. 访问链接
Liying Yi, Jing Wu MAWXXFBYYLDGXZJHU. The atmospheric concentrations and emissions of major halocarbons in China during 2009–2019. Environmental Pollution [Internet]. 2021;284. 访问链接Abstract
Due to the characteristics of ozone-depleting and high global warming potential, chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs) and hydrofluorocarbons (HFCs) have been restricted by the Montreal Pro- tocol and its amendments over the world. Considering that China is one of the main contributors to the emission of halocarbons, a long-term atmospheric observation on major substances including CFC-11 (CCl3F), CFC-12 (CCl2F2), HCFC-22 (CHClF2), HCFC-141b (CH3CCl2F), HCFC-142b (CH3CClF2) and HFC-134a (CH2FCF3) was conducted in five cities (Beijing, Hangzhou, Guangzhou, Lanzhou and Chengdu) of China during 2009–2019. The atmospheric concentrations of CFC-11, CFC-12, HCFC-141b and HCFC-142b all showed declining trends on the whole while those of HCFC-22 and HFC-134a were opposite. A paired sample t-test showed that the ambient mixing ratios of HCFC-22 and HFC-134a in cities were 41.9% and 25.7% higher on average than those in sub- urban areas, respectively, while the other substances did not show significant regional differences. The annual emissions of halocarbons were calculated using an interspecies correlation method and the results were generally consistent with the published estimates. Discrepancies between bottom-up inventories and the estimates in this study for CFCs emissions were found. Among the most consumed ozone depleting substances (ODSs) in China, CFCs accounted for 75.1% of the ozone depletion potential (ODP)-weighted emissions while HCFCs contributed a larger proportion (58.6%) of CO2-equivalent emissions in 2019. China’s emissions of HCFC-141b and HCFC-142b contributed the most to the global emission (17.8%–48.0%). The elimination of HCFCs in China will have a crucial impact on the HCFCs phase-out in the world.