Modal transition and reduction in a lossy dielectric-coated waveguide for gyrotron-traveling-wave tube amplifier applications

Citation:

Du C-H, Xue Q-Z, Liu P-K, Wang M-H. Modal transition and reduction in a lossy dielectric-coated waveguide for gyrotron-traveling-wave tube amplifier applications. IEEE Transactions on Electron Devices [Internet]. 2009;56(6):839-845.

摘要:

A metal cylindrical waveguide coated with an inside layer of lossy dielectric which affects the propagation characteristics of a guided electromagnetic mode is investigated for gyrotron-traveling-wave tube (gyro-TWT) amplifier applications. This paper reveals a series of novel phenomena. The dispersion curve of a higher order mode has a turning point during its evolvement from the fast wave region to the slow wave region. An electromagnetic mode in the lossy dielectric-coated waveguide exhibits a transverse partial-standing-wave distribution. The dielectric loss induces modal transition which results in the dispersion curves of a pair of nearby modes crossing each other and interchanging mode structures. Modal reduction caused by strong dielectric loss merges a pair of nearby modes into one. In this one merged mode, the dielectric-coated waveguide is equivalent to a conventional cylindrical waveguide with imperfect conducting wall. This improved understanding of lossy dielectric-coated metal cylindrical waveguide is of value and usefulness for application toward gyro-TWTs capable of high-power and wide bandwidth.

访问链接