Broadband continuous frequency tuning in a terahertz gyrotron with tapered cavity

Citation:

Qi X-B, Du C-H, Liu P-K. Broadband continuous frequency tuning in a terahertz gyrotron with tapered cavity. IEEE Transactions on Electron Devices [Internet]. 2015;62(12):4278-4284.

摘要:

Broadband continuous frequency tuning (CFT) in a terahertz gyrotron is promising for advanced terahertz applications. However, it is challenging to realize broadband CFT in a conventional open cavity, because a long cavity is helpful to expand the bandwidth but is generally difficult to suppress the high Q -factor gyromonotron competition. In this paper, a tapered cavity with a long effective interaction length is proposed to expand the CFT bandwidth. The tapered circuit can reduce the Q-factor of the first-order axial mode and accordingly suppress the gyromonotron competition. By selecting a reasonable Q-factor cavity, a gyrotron could generate effective radiation sequentially under gyromonotron and gyrobackward-wave oscillator (BWO) states during the magnetic field tuning. In gyromonotron range, the bandwidth is expanded because of the cutoff frequency shifting. On the other hand, in gyro-BWO range, the bandwidth is expanded because of the axial mode transition. The CFT bandwidth of 4 GHz is realized in a tapered 330-GHz TE12,4 mode low-voltage gyrotron. The principle is important for developing broadband CFT terahertz gyrotrons.

访问链接