科研成果 by Year: 2021

2021
Zhao G, Hu M, Fang X, Tan T, Xiao Y, Du Z, Zheng J, Shang D, Wu Z, Guo S, et al. Larger than expected variation range in the real part of the refractive index for ambient aerosols in China. Science of the Total EnvironmentScience of the Total Environment. 2021;779.Abstract
The real part of the refractive index (RRI) of ambient aerosol, which is widely used in remote sensing and atmospheric models, is one of the key factors determining its particles' optical properties. The characteristics of ambient aerosol RRI in China have not yet been well studied owing to a lack of observations. For the first time, the properties of aerosol RRI were studied based on field measurements in China at four sites with different atmospheres. The results revealed that the measured ambient aerosol RRI varied significantly between 1.36 and 1.78, increasing with the mass ratio of organic components. The scattering coefficient and direct radiative effects of the aerosols were estimated to increase by factors of 2 and 3, respectively, when RRI increased from 1.36 to 1.78. Our results indicate that variation in ambient aerosol RRI should be considered in aerosol and climate models to achieve an accurate estimation of aerosol's radiative impacts. © 2021 Elsevier B.V.
Zhang Z, Zhu W, Hu M, Wang H, Chen Z, Shen R, Yu Y, Tan R, Guo S. Secondary Organic Aerosol from Typical Chinese Domestic Cooking Emissions. Environmental Science and Technology LettersEnvironmental Science and Technology LettersEnvironmental Science and Technology Letters. 2021;8:24-31.Abstract
Cooking has been proven to be a significant source of primary organic aerosol, especially in megacities. However, the formation of secondary organic aerosol (SOA) derived from cooking emissions is still poorly understood. In this work, four prevalent Chinese domestic cooking types involving complicated cuisines and various cooking methods were chosen to conduct a lab simulation for SOA formation using a Gothenburg potential aerosol mass reactor (Go: PAM). After samples had been aged under OH exposures of 4.3-27.1 × 1010 molecules cm-3 s, the domestic cooking SOA was characterized by mass growth potentialities (1.81-3.16), elemental ratios (O/C = 0.29-0.41), and mass spectra. Compared with other organic aerosol (OA), domestic cooking SOA is a kind of less oxidized oxygenated OA (LO-OOA) with a unique oxidation pathway (alcohol/peroxide pathway) and mass spectra (characteristic peaks at m/z 28, 29, 41, 43, 44, 55, and 57). This study is expected to identify the cooking SOA under actual cooking conditions, which could contribute to the formulation of pollution source control as well as the health risk assessment of exposure to cooking fumes. ©
Yu Y, Wang H, Wang T, Song K, Tan T, Wan Z, Gao Y, Dong H, Chen S, Zeng L, et al. Elucidating the importance of semi-volatile organic compounds to secondary organic aerosol formation at a regional site during the EXPLORE-YRD campaign. Atmospheric EnvironmentAtmospheric EnvironmentAtmospheric Environment. 2021;246.Abstract
To investigate the regional secondary organic aerosol (SOA) formation at Yangtze River Delta (YRD) region, China, the chemical composition of fine particles and their gaseous precursors were simultaneously measured at a regional site, Taizhou, during EXPeriment on the eLucidation of the atmospheric Oxidation capacity, aerosol foRmation and their Effects in Yangtze River Delta (EXPLORE-YRD) intensive field campaign from May to June 2018. Secondary organic carbon (SOC) was estimated by both bottom-up and top-down method, i.e. the yield method from volatile organic compounds (VOCs) oxidation, and the elemental carbon (EC) tracer method. Our result showed that the oxidation of alkanes and aromatics measured by GC-MS/FID based on the yield method could only explain 25.3% of the SOC derived from the EC tracer method, in which aromatics were the dominant contributors (23.9%). This percentage increased to 39.5% while two semi-volatile organic compounds (SVOCs), i.e. naphthalene, and methylnaphthalene, were used in the calculation, suggesting the importance of SVOCs on SOA formation. The SOA formation pathways were further explored. The good correlation of SOC and odd oxygen (Ox) indicated the important role of photochemical reactions on SOA formation in the summer of YRD. Our findings evaluated the contributions of VOCs to SOA formation in Taizhou, revealed the importance of SVOCs to SOA formation and highlighted an urgent need for more exploration of SVOCs in the future. © 2020 The Authors
Xu N, Wang TT, Li X, Tang RZ, Guo S, Hu M. Chemical Characteristics and Source Apportionment of Organic Aerosols in Atmospheric PM2.5 in Winter in Beijing. Huanjing Kexue/Environmental ScienceHuanjing Kexue/Environmental ScienceHuanjing Kexue/Environmental Science. 2021;42:2101-2109.Abstract
To explore the concentrations, characteristics, and sources of organic aerosols in winter in Beijing, atmospheric fine particulate matter (PM2.5) samples were collected from November 10, 2016 to December 10, 2016. One hundred and twenty-nine particulate organic matters (POM) were quantified by gas chromatography-mass spectrometry, accounting for approximately 9.3%±1.2% of the total concentration of organic matter. The most abundant class was sugar, among which levoglucosan alone accounted for 18% of the quantified organic matter mass. The next most abundant classes were alkanoic acids, normal alkanes, dicarboxylic acids, and polycyclic aromatic hydrocarbons. The influence of winter heating and biomass burning emissions on organic aerosols in winter in Beijing was analyzed by the characteristics of the molecular markers in the POM. Compared with those during the non-heating period, the concentrations and proportions of hopane species, which are tracers for fossil fuels, increased in the organic matters during the heating period. Moreover, the influence of coal burning emissions on the distribution of hopane species was enhanced. The species with the maximum concentration and carbon predominance index in n-alkanes also reflected the influence of enhanced fossil fuel emissions. The results of the concentration-weighted trajectory model for levoglucosan, a tracer for biomass combustion, suggested that straw burning pollution in the surrounding areas of Beijing would affect the composition of organic aerosols in Beijing via airmass transport. A molecular marker-based chemical mass balance model was used to apportion the sources of organic carbon in the winter of 2016 in Beijing, and the results were compared with those of research in 2006 to quantify the changes in the source contributions over 10 years. The contribution of motor vehicles increased significantly in 2016 compared with that in 2006, whereas the contribution of coal burning and wood burning decreased to a large extent. The contribution of cooking emissions could not be ignored. Therefore, the control of motor vehicle and cooking emissions is of great importance to reduce the problem of PM2.5 pollution in winter in Beijing. © 2021, Science Press. All right reserved.
Wang Z, Hu W, Niu H, Hu W, Wu Y, Wu L, Ren L, Deng J, Guo S, Wu Z, et al. Variations in physicochemical properties of airborne particles during a heavy haze-to-dust episode in Beijing. Science of the Total EnvironmentScience of the Total Environment. 2021;762.Abstract
The variations in physicochemical properties of airborne particles collected during a typical transition from haze to dust were investigated using single particle analysis with transmission and scanning electron microscopes combined with online measurement of chemical compositions of airborne particles in Beijing in February 2013. The transition was divided into three phases based on the weather condition. During haze pollution (Phase 1), gaseous and particle pollutants enhanced gradually. Results from single particle analysis showed that more coatings and more anthropogenic elements (e.g., S) appeared on the surface of fine and coarse particles, which was probably caused by efficient aqueous-phase reactions under high humidity (70%) condition. Phase 2 was dust intrusion episode. PM10 reached over 1000 μg m−3. Larger fractions of mineral particles and bare-like soot particles were observed in fine particles, while the fraction of secondary particles with coatings decreased. The proportion of black carbon in submicron particles also increased. Photochemical oxidation in gas phase likely dominated in secondary formation under high O3 concentration. After the dust episode (Phase 3), secondary formation enhanced obviously. Soot aged quickly and had a larger mode of 0.45 μm than the other phases. The size modes of airborne fine particles during Phases 1 and 3 were 0.35 μm, which were a bit larger than that during Phase 2 (0.24 μm). These results indicate that dust plumes accompanied with strong wind brought mineral particles in both fine and coarse modes and freshly emitted particles with smaller sizes, and swept away pre-presence air pollutants. This study could provide detailed information on the physicochemical properties of airborne particles during typical severe pollution processes in a short time. Such short-term change should be taken into account in order to more accurately assess the environmental, climatic and health-related effects of airborne particles. © 2020 Elsevier B.V.
Wang Y, Hu M, Hu W, Zheng J, Niu H, Fang X, Xu N, Wu Z, Guo S, Wu Y, et al. Secondary Formation of Aerosols Under Typical High-Humidity Conditions in Wintertime Sichuan Basin, China: A Contrast to the North China Plain. Journal of Geophysical Research: AtmospheresJournal of Geophysical Research: AtmospheresJournal of Geophysical Research: Atmospheres. 2021;126.Abstract
The Sichuan Basin is one of the regions suffering from severe haze pollution in southwest China. However, the secondary aerosol formation in this region is poorly understood. In this study, the chemical compositions of PM2.5 and molecular compositions of water-soluble organics in wintertime Sichuan were measured to investigate the aerosol sources and formation under typical high relative humidity (RH) conditions. Strong correlations between PM2.5, carbonaceous aerosols and K+ suggested the influence of biomass burning. The impacts of biomass burning were also supported by the dominance of primarily emitted reduced/less oxidized nitrogen-containing organics as well as the high peak intensities of secondarily formed nitrocatechols and methyl-nitrocatechols. High humidity (average RH = 80%) and aerosol liquid water (ALW) in Sichuan facilitated the secondary formation of sulfate, nitrate, and secondary organic aerosols (SOA). The average sulfate oxidation ratio and nitrogen oxidation ratio in Sichuan were 2.5 and 3.1 times of those in winter Beijing (average RH = 27%). This suggested higher potentials of SO2 and NOx to form sulfate and nitrate under high-RH conditions. The abundant aqueous-SOA formation in Sichuan was supported by the dominance of organosulfates (OSs) and nitrooxy-OSs in mass spectra of water-soluble organics, while the OSs in winter Beijing were quite limited. The more abundant OS formation in Sichuan was attributed to the much higher RH, ALW, aerosol acidity, and sulfate, which favored the acidic sulfate-catalyzed aqueous-phase reactions for OS formation. Higher concentrations of biogenic volatile organic compounds were additional reasons for the more abundant OSs in Sichuan than in Beijing. © 2021. American Geophysical Union. All Rights Reserved.
Wang X, Li L, Gong K, Mao J, Hu J, Li J, Liu Z, Liao H, Qiu W, Yu Y, et al. Modelling air quality during the EXPLORE-YRD campaign – Part I. Model performance evaluation and impacts of meteorological inputs and grid resolutions. Atmospheric EnvironmentAtmospheric EnvironmentAtmospheric Environment. 2021;246.Abstract
The EXPeriment on the eLucidation of the atmospheric Oxidation capacity and aerosol foRmation and their Effects in the Yangtze River Delta (EXPLORE-YRD) campaign was carried out between May and June 2018 at a regional site in Taizhou, China. The EXPLORE-YRD campaign helped construct a detailed air quality model to understand the formation of O3 and PM2.5 further, identify the key sources of elevated air pollution events, and design efficient emission control strategies to reduce O3 and PM2.5 pollution in YRD. In this study, we predicted the air quality during the EXPLORE-YRD campaign using the Weather Research and Forecasting/Community Multiscale Air Quality modelling system (WRF/CMAQ) and evaluated model performance on O3 and PM2.5 concentrations and compositions. Air quality was predicted using two sets of reanalysis data—NCEP Final (FNL) Operational Global Analysis and ECMWF Reanalysis v5.0 (ERA5)—and three horizontal resolutions of 36, 12, and 4 km. The results showed that PM2.5 concentration was generally under-predicted using both the FNL and ERA5 data. ERA5 yielded slightly higher PM2.5 predictions during the EXPLORE-YRD campaign. Both reanalysis data sets under-predicted the high PM2.5 pollution processes on 29–30 May 2018, indicating that reanalysis data is not essential for under-predicting extreme PM2.5 pollution processes. The performance of O3 was similar in both the reanalysis data sets, because O3 is mostly sensitive to temperature predictions and FNL and ERA5 yielded similar temperature results. Although the average performance of PM2.5 and O3 predictions yielded by FNL and ERA5 was similar, large differences were observed in certain locations on specific days (e.g. in Hangzhou between 29 May and June 6, 2018 and in Hefei on 1–3 June 2018). Therefore, the choice of reanalysis data could be an important factor affecting the predictions of PM2.5 and O3, depending on locations and episodes. Comparable results were obtained using predictions with different horizontal resolutions, indicating that grid resolution was not crucial for determining the model performance of both PM2.5 and O3 during the campaign. © 2020 Elsevier Ltd
Wang T, Zhao G, Tan T, Yu Y, Tang R, Dong H, Chen S, Li X, Lu K, Zeng L, et al. Effects of biomass burning and photochemical oxidation on the black carbon mixing state and light absorption in summer season. Atmospheric EnvironmentAtmospheric EnvironmentAtmospheric Environment. 2021;248.Abstract
To investigate the effects of biomass burning and photochemical oxidation on the black carbon (BC) mixing state and light absorption, a tandem centrifugal particle mass analyzer (CPMA) and single-particle soot photometer (SP2) system was used to measure ambient fine particulate BC during EXPLORE-YRD 2018 campaign (EXPeriment on the eLucidation of the atmospheric Oxidation capacity and aerosol foRmation, and their Effects in Yangtze River Delta). The mass ratio (MR) of the non-BC coating to BC core, a morphology-independent parameter to quantify the mixing state of BC-containing aerosols, is derived. Two types of periods were identified, namely non-significant biomass-burning period (NB), and enhanced biomass burning period (EB). The MR was higher during EB (2.3 ± 0.5), compared with during the NB (2.0 ± 0.5). MR showed bimodal diurnal variation with peaks in the early morning and early afternoon, mainly due to the biomass burning and photochemical processes, respectively. The light-absorbing enhancement ranged from 1.0 to 1.19 when MR was from 1.4 to 3.4. The relationship of rBC mixing state and its optical properties was parameterized, which can further be used in the regional model. © 2021 The Author(s)
Zhu W, Guo S, Lou S, Wang H, Yu Y, Xu W, Liu Y, Cheng Z, Huang X, He L, et al. A novel algorithm to determine the scattering coefficient of ambient organic aerosols. Environmental Pollution. 2021;270.Abstract
In the present work, we propose a novel algorithm to determine the scattering coefficient of OA by evaluating the relationships of the MSEs for primary organic aerosol (POA) and secondary organic aerosol (SOA) with their mass concentrations at three distinct sites, i.e. an urban site, a rural site, and a background site in China. Our results showed that the MSEs for POA and SOA increased rapidly as a function of mass concentration in low mass loading. While the increasing rate declined after a threshold of mass loading of 50 μg/m3 for POA, and 15 μg/m3 for SOA, respectively. The dry scattering coefficients of submicron particles (PM1) were reconstructed based on the algorithm for POA and SOA scattering coefficient and further verified by using multi-site data. The calculated dry scattering coefficients using our reconstructing algorithm have good consistency with the measured ones, with the high correlation and small deviation in Shanghai (R2 = 0.98; deviations: 2.9%) and Dezhou (R2 = 0.90; deviations: 4.7%), indicating that our algorithms for OA and PM1 are applicable to predict the scattering coefficient of OA and Submicron particle (PM1) in China. © 2020 Elsevier Ltd
Wang X, Li L, Gong K, Mao J, Hu J, Li J, Liu Z, Liao H, Qiu W, Yu Y, et al. Modelling air quality during the EXPLORE-YRD campaign – Part I. Model performance evaluation and impacts of meteorological inputs and grid resolutions. Atmospheric EnvironmentAtmospheric EnvironmentAtmospheric Environment. 2021;246.Abstract
The EXPeriment on the eLucidation of the atmospheric Oxidation capacity and aerosol foRmation and their Effects in the Yangtze River Delta (EXPLORE-YRD) campaign was carried out between May and June 2018 at a regional site in Taizhou, China. The EXPLORE-YRD campaign helped construct a detailed air quality model to understand the formation of O3 and PM2.5 further, identify the key sources of elevated air pollution events, and design efficient emission control strategies to reduce O3 and PM2.5 pollution in YRD. In this study, we predicted the air quality during the EXPLORE-YRD campaign using the Weather Research and Forecasting/Community Multiscale Air Quality modelling system (WRF/CMAQ) and evaluated model performance on O3 and PM2.5 concentrations and compositions. Air quality was predicted using two sets of reanalysis data—NCEP Final (FNL) Operational Global Analysis and ECMWF Reanalysis v5.0 (ERA5)—and three horizontal resolutions of 36, 12, and 4 km. The results showed that PM2.5 concentration was generally under-predicted using both the FNL and ERA5 data. ERA5 yielded slightly higher PM2.5 predictions during the EXPLORE-YRD campaign. Both reanalysis data sets under-predicted the high PM2.5 pollution processes on 29–30 May 2018, indicating that reanalysis data is not essential for under-predicting extreme PM2.5 pollution processes. The performance of O3 was similar in both the reanalysis data sets, because O3 is mostly sensitive to temperature predictions and FNL and ERA5 yielded similar temperature results. Although the average performance of PM2.5 and O3 predictions yielded by FNL and ERA5 was similar, large differences were observed in certain locations on specific days (e.g. in Hangzhou between 29 May and June 6, 2018 and in Hefei on 1–3 June 2018). Therefore, the choice of reanalysis data could be an important factor affecting the predictions of PM2.5 and O3, depending on locations and episodes. Comparable results were obtained using predictions with different horizontal resolutions, indicating that grid resolution was not crucial for determining the model performance of both PM2.5 and O3 during the campaign. © 2020 Elsevier Ltd
Shang D, Peng J, Guo S, Wu Z, Hu M. Secondary aerosol formation in winter haze over the Beijing-Tianjin-Hebei Region, China. Frontiers of Environmental Science and EngineeringFrontiers of Environmental Science and EngineeringFrontiers of Environmental Science and Engineering. 2021;15.Abstract
Severe haze pollution occurs frequently in the winter over the Beijing-Tianjin-Hebei (BTH) region (China), exerting profound impacts on air quality, visibility, and human health. The Chinese Government has taken strict mitigation actions since 2013 and has achieved a significant reduction in the annual mean PM2.5 concentration over this region. However, the level of secondary aerosols during heavy haze episodes showed little decrease during this period. During heavy haze episodes, the concentrations of secondary aerosol components, including sulfate, nitrate and secondary organics, in aerosol particles increase sharply, acting as the main contributors to aerosol pollution. To achieve effective control of particle pollution in the BTH region, the precise and complete secondary aerosol formation mechanisms have been investigated, and advances have been made about the mechanisms of gas phase reaction, nucleation and heterogeneous reactions in forming secondary aerosols. This paper reviews the research progress in aerosol chemistry during haze pollution episodes in the BTH region, lays out the challenges in haze formation studies, and provides implications and directions for future research. [Figure not available: see fulltext.]. © 2020, Higher Education Press.

Pages