Secondary Formation of Aerosols Under Typical High-Humidity Conditions in Wintertime Sichuan Basin, China: A Contrast to the North China Plain

Citation:

Wang Y, Hu M, Hu W, Zheng J, Niu H, Fang X, Xu N, Wu Z, Guo S, Wu Y, et al. Secondary Formation of Aerosols Under Typical High-Humidity Conditions in Wintertime Sichuan Basin, China: A Contrast to the North China Plain. Journal of Geophysical Research: AtmospheresJournal of Geophysical Research: AtmospheresJournal of Geophysical Research: Atmospheres. 2021;126.

摘要:

The Sichuan Basin is one of the regions suffering from severe haze pollution in southwest China. However, the secondary aerosol formation in this region is poorly understood. In this study, the chemical compositions of PM2.5 and molecular compositions of water-soluble organics in wintertime Sichuan were measured to investigate the aerosol sources and formation under typical high relative humidity (RH) conditions. Strong correlations between PM2.5, carbonaceous aerosols and K+ suggested the influence of biomass burning. The impacts of biomass burning were also supported by the dominance of primarily emitted reduced/less oxidized nitrogen-containing organics as well as the high peak intensities of secondarily formed nitrocatechols and methyl-nitrocatechols. High humidity (average RH = 80%) and aerosol liquid water (ALW) in Sichuan facilitated the secondary formation of sulfate, nitrate, and secondary organic aerosols (SOA). The average sulfate oxidation ratio and nitrogen oxidation ratio in Sichuan were 2.5 and 3.1 times of those in winter Beijing (average RH = 27%). This suggested higher potentials of SO2 and NOx to form sulfate and nitrate under high-RH conditions. The abundant aqueous-SOA formation in Sichuan was supported by the dominance of organosulfates (OSs) and nitrooxy-OSs in mass spectra of water-soluble organics, while the OSs in winter Beijing were quite limited. The more abundant OS formation in Sichuan was attributed to the much higher RH, ALW, aerosol acidity, and sulfate, which favored the acidic sulfate-catalyzed aqueous-phase reactions for OS formation. Higher concentrations of biogenic volatile organic compounds were additional reasons for the more abundant OSs in Sichuan than in Beijing. © 2021. American Geophysical Union. All Rights Reserved.

附注:

Export Date: 7 June 2021