Size-resolved effective density of submicron particles during summertime in the rural atmosphere of Beijing, China

Citation:

Qiao K, Wu Z, Pei X, Liu Q, Shang D, Zheng J, Du Z, Zhu W, Wu Y, Lou S, et al. Size-resolved effective density of submicron particles during summertime in the rural atmosphere of Beijing, China. Journal of Environmental SciencesJournal of Environmental Sciences. 2018;73:69-77.

摘要:

Particle density is an important physical property of atmospheric particles. The information on high time-resolution size-resolved particle density is essential for understanding the atmospheric physical and chemical aging processes of aerosols particles. In the present study, a centrifugal particle mass analyzer (CPMA) combined with a differential mobility analyzer (DMA) was deployed to determine the size-resolved effective density of 50 to 350nm particles at a rural site of Beijing during summer 2016. The measured particle effective densities decreased with increasing particle sizes and ranged from 1.43 to 1.55g/cm3, on average. The effective particle density distributions were dominated by a mode peaked at around 1.5g/cm3 for 50 to 350nm particles. Extra modes with peaks at 1.0, 0.8, and 0.6g/cm3 for 150, 240, and 350nm particles, which might be freshly emitted soot particles, were observed during intensive primary emissions episodes. The particle effective densities showed a diurnal variation pattern, with higher values during daytime. A case study showed that the effective density of Aitken mode particles during the new particle formation (NPF) event decreased considerably, indicating the significant contribution of organics to new particle growth.