科研成果 by Year: 2010

2010
Wang Z, King SM, Freney E, Rosenoern T, Smith ML, Chen Q, Kuwata M, Lewis ER, Poeschl U, Wang W, et al. The dynamic shape factor of sodium chloride nanoparticles as regulated by drying rate. Aerosol Science and Technology. 2010;44:939-953.
Pöschl U, Martin ST, Sinha B, Chen Q, Gunthe SS, Huffman JA, Borrmann S, Farmer DK, Garland RM, Helas G, et al. Rainforest aerosols as biogenic nuclei of clouds and precipitation in the Amazon. Science. 2010;329:1513-1516.Abstract
The Amazon is one of the few continental regions where atmospheric aerosol particles and their effects on climate are not dominated by anthropogenic sources. During the wet season, the ambient conditions approach those of the pristine pre-industrial era. We show that the fine submicrometer particles accounting for most cloud condensation nuclei are predominantly composed of secondary organic material formed by oxidation of gaseous biogenic precursors. Supermicrometer particles, which are relevant as ice nuclei, consist mostly of primary biological material directly released from rainforest biota. The Amazon Basin appears to be a biogeochemical reactor, in which the biosphere and atmospheric photochemistry produce nuclei for clouds and precipitation sustaining the hydrological cycle. The prevailing regime of aerosol-cloud interactions in this natural environment is distinctly different from polluted regions.
Martin ST, Andreae MO, Artaxo P, Baumgardner D, Chen Q, Goldstein AH, Guenther A, Heald CL, Mayol-Bracero OL, McMurry PH, et al. Sources and properties of amazonian aerosol particles. Reviews of Geophysics. 2010;48:Rg2002.Abstract
This review provides a comprehensive account of what is known presently about Amazonian aerosol particles and concludes by formulating outlook and priorities for further research. The review is organized to follow the life cycle of Amazonian aerosol particles. It begins with a discussion of the primary and secondary sources relevant to the Amazonian particle burden, followed by a presentation of the particle properties that characterize the mixed populations present over the Amazon Basin at different times and places. These properties include number and mass concentrations and distributions, chemical composition, hygroscopicity, and cloud nucleation ability. The review presents Amazonian aerosol particles in the context of natural compared to anthropogenic sources as well as variability with season and meteorology. This review is intended to facilitate an understanding of the current state of knowledge on Amazonian aerosol particles specifically and tropical continental aerosol particles in general and thereby to enhance future research in this area.
Martin ST, Andreae MO, Althausen D, Artaxo P, Baars H, Borrmann S, Chen Q, Farmer DK, Guenther A, Gunthe SS, et al. An overview of the Amazonian Aerosol Characterization Experiment 2008 (AMAZE-08). Atmospheric Chemistry and Physics. 2010;10:11415-11438.Abstract
The Amazon Basin provides an excellent environment for studying the sources, transformations, and properties of natural aerosol particles and the resulting links between biological processes and climate. With this framework in mind, the Amazonian Aerosol Characterization Experiment (AMAZE-08), carried out from 7 February to 14 March 2008 during the wet season in the central Amazon Basin, sought to understand the formation, transformations, and cloud-forming properties of fine-and coarse-mode biogenic aerosol particles, especially as related to their effects on cloud activation and regional climate. Special foci included (1) the production mechanisms of secondary organic components at a pristine continental site, including the factors regulating their temporal variability, and (2) predicting and understanding the cloud-forming properties of biogenic particles at such a site. In this overview paper, the field site and the instrumentation employed during the campaign are introduced. Observations and findings are reported, including the large-scale context for the campaign, especially as provided by satellite observations. New findings presented include: (i) a particle number-diameter distribution from 10 nm to 10 mu m that is representative of the pristine tropical rain forest and recommended for model use; (ii) the absence of substantial quantities of primary biological particles in the submicron mode as evidenced by mass spectral characterization; (iii) the large-scale production of secondary organic material; (iv) insights into the chemical and physical properties of the particles as revealed by thermodenuder-induced changes in the particle number-diameter distributions and mass spectra; and (v) comparisons of ground-based predictions and satellite-based observations of hydrometeor phase in clouds. A main finding of AMAZE-08 is the dominance of secondary organic material as particle components. The results presented here provide mechanistic insight and quantitative parameters that can serve to increase the accuracy of models of the formation, transformations, and cloud-forming properties of biogenic natural aerosol particles, especially as related to their effects on cloud activation and regional climate.
King SM, Rosenoern T, Shilling JE, Chen Q, Wang Z, Biskos G, McKinney KA, Pöschl U, Martin ST. Cloud droplet activation of mixed organic-sulfate particles produced by the photooxidation of isoprene. Atmospheric Chemistry and Physics. 2010;10:3953-3964.Abstract
The cloud condensation nuclei (CCN) properties of ammonium sulfate particles mixed with organic material condensed during the hydroxyl-radical-initiated photooxidation of isoprene (C5H8) were investigated in the continuous-flow Harvard Environmental Chamber. CCN activation curves were measured for organic particle mass concentrations of 0.5 to 10.0 mu g m(-3), NOx concentrations from under 0.4 ppbv up to 38 ppbv, particle mobility diameters from 70 to 150 nm, and thermodenuder temperatures from 25 to 100 degrees C. At 25 degrees C, the observed CCN activation curves were accurately described by a Kohler model having two internally mixed components, namely ammonium sulfate and secondary organic material. The modeled physicochemical parameters of the organic material were equivalent to an effective hygroscopicity parameter kappa(ORG) of 0.10 +/- 0.03, regardless of the C5H8:NOx concentration ratio for the span of > 200:0.4 to 50:38 (ppbv:ppbv). The volatilization curves (i.e., plots of the residual organic volume fraction against temperature) were also similar for the span of investigated C5H8:NOx ratios, suggesting a broad similarity of particle chemical composition. This suggestion was supported by limited variance at 25 degrees C among the particle mass spectra. For example, the signal intensity at m/z 44 (which can result from the fragmentation of oxidized molecules believed to affect hygroscopicity and CCN properties) varied weakly from 6 to 9% across the range of investigated conditions. In contradistinction to the results for 25 degrees C, conditioning up to 100 degrees C in the thermodenuder significantly reduced CCN activity. The altered CCN activity might be explained by chemical reactions (e.g., decomposition or oligomerization) of the secondary organic material at elevated temperatures. The study's results at 25 degrees C, in conjunction with the results of other chamber and field studies for a diverse range of conditions, suggest that a value of 0.10 +/- 0.05 for kappa(ORG) is representative of both anthropogenic and biogenic secondary organic material. This finding supports the use of kappa(ORG) as a simplified yet accurate general parameter to represent the CCN activation of secondary organic material in large-scale atmospheric and climate models.
Heald CL, Kroll JH, Jimenez JL, Docherty KS, DeCarlo PF, Aiken AC, Chen Q, Martin ST, Farmer DK, Artaxo P. A simplified description of the evolution of organic aerosol composition in the atmosphere. Geophysical Research Letters. 2010;37:L08803.Abstract
Organic aerosol (OA) in the atmosphere consists of a multitude of organic species which are either directly emitted or the products of a variety of chemical reactions. This complexity challenges our ability to explicitly characterize the chemical composition of these particles. We find that the bulk composition of OA from a variety of environments (laboratory and field) occupies a narrow range in the space of a Van Krevelen diagram (H: C versus O:C), characterized by a slope of similar to-1. The data show that atmospheric aging, involving processes such as volatilization, oxidation, mixing of air masses or condensation of further products, is consistent with movement along this line, producing a more oxidized aerosol. This finding has implications for our understanding of the evolution of atmospheric OA and representation of these processes in models. Citation: Heald, C. L., J. H. Kroll, J. L. Jimenez, K. S. Docherty, P. F. DeCarlo, A. C. Aiken, Q. Chen, S. T. Martin, D. K. Farmer, and P. Artaxo (2010), A simplified description of the evolution of organic aerosol composition in the atmosphere, Geophys. Res. Lett., 37, L08803, doi: 10.1029/2010GL042737.