Schneider J, Freutel F, Zorn SR, Chen Q, Farmer DK, Jimenez JL, Martin ST, Artaxo P, Wiedensohler A, Borrmann S.
Mass- spectrometric identification of primary biological particle markers and application to pristine submicron aerosol measurements in Amazonia. Atmospheric Chemistry and Physics. 2011;11:11415-11429.
AbstractThe detection of primary biological material in submicron aerosol by means of thermal desorption/electron impact ionization aerosol mass spectrometry was investigated. Mass spectra of amino acids, carbohydrates, small peptides, and proteins, all of which are key building blocks of biological particles, were recorded in laboratory experiments. Several characteristic marker fragments were identified. The intensity of the marker signals relative to the total organic mass spectrum allows for an estimation of the content of primary biological material in ambient organic aerosol. The developed method was applied to mass spectra recorded during AMAZE-08, a field campaign conducted in the pristine rainforest of the central Amazon Basin, Brazil, during the wet season of February and March 2008. The low abundance of identified marker fragments places upper limits of 7.5% for amino acids and 5.6% for carbohydrates on the contribution of primary biological aerosol particles (PBAP) to the submicron organic aerosol mass concentration during this time period. Upper limits for the absolute submicron concentrations for both compound classes range from 0.01 to 0.1 mu g m(-3). Carbohydrates and proteins (composed of amino acids) make up for about two thirds of the dry mass of a biological cell. Thus, our findings suggest an upper limit for the PBAP mass fraction of about 20% to the submicron organic aerosol measured in Amazonia during AMAZE-08.
Robinson NH, Hamilton JF, Allan JD, Langford B, Oram DE, Chen Q, Docherty K, Farmer DK, Jimenez JL, Ward MW, et al. Evidence for a significant proportion of secondary organic aerosol from isoprene above a maritime tropical forest. Atmospheric Chemistry and Physics. 2011;11:1039-1050.
Li YJ, Chen Q, Guzman MI, Chan CK, Martin ST.
Second-generation products contribute substantiallyto the particle-phase organic material produced by β-caryophyllene ozonolysis. Atmospheric Chemistry and Physics. 2011;11:121-132.
AbstractThe production of secondary organic aerosol (SOA) by the dark ozonolysis of gas-phase beta-caryophyllene was studied. The experiments were conducted in a continuous-flow environmental chamber for organic particle mass concentrations of 0.5 to 30 mu g m(-3) and with ozone in excess, thereby allowing the study of second-generation particle-phase products under atmospherically relevant conditions. The particle-phase products were characterized by an ultra-performance liquid chromatograph equipped with an electrospray ionization time-of-flight mass spectrometer (UPLC-ESI-ToF-MS). Fragmentation mass spectra were used for the structural elucidation of each product, and the structures were confirmed as consistent with the accurate m/z values of the parent ions. In total, fifteen products were identified. Of these, three are reported for the first time. The structures showed that 9 out of 15 particle-phase products were second generation, including all three of the new products. The relative abundance of the second-generation products was approximately 90% by mass among the 15 observed products. The O:C and H:C elemental ratios of the 15 products ranged from 0.13 to 0.50 and from 1.43 to 1.60, respectively. Fourteen of the products contained 3 to 5 oxygen atoms. A singular product, which was one of the three newly identified ones, had 7 oxygen atoms, including 1 carboxylic group, 2 carbonyl groups, and 3 hydroxyl groups. It was identified as 2, 3-dihydroxy-4-[2-(4-hydroxy-3-oxobutyl)3, 3-dimethylcyclobutyl]-4-oxobutanoic acid (C14H22O7). The estimated saturation vapor pressure of this product is 3.3x10(-13) Pa, making this product a candidate contributor to new particle formation in the atmosphere.
Kuwata M, Chen Q, Martin ST.
Cloud condensation nuclei (CCN) activity and oxygen-to-carbon elemental ratios following thermodenuder treatment of organic particles grown by a-pinene ozonolysis. Physical Chemistry Chemical Physics. 2011;13:14571-14583.
AbstractThe effects of thermodenuder treatment on the cloud condensation nuclei (CCN) activity and elemental composition of organic particles grown by alpha-pinene ozonolysis were investigated. The secondary organic material (SOM) was produced in a continuous-flow chamber, with steady-state organic particle mass concentrations M(org) ranging from 1.4 to 37 mu g m(-3). Particles exiting in the outflow were heated to temperatures T of up to 100 degrees C in a thermodenuder. The oxygen-to-carbon (O:C) and hydrogen-to-carbon (H:C) ratios were measured by on-line mass spectrometry. The observed elemental ratios were fit by a linear function, given by (H:C) = -0.8 (O:C) + 1.8 for 0.38 < O:C < 0.50. This fit included the dependence on both M(org) and T, meaning that the single variable of post-thermodenuder M(org) was sufficient as an accurate predictor for O:C(M(org)(T)) and H:C(M(org)(T)). This result suggests that equilibrium partitioning theory largely governed the initial volatilization in the thermodenuder. By comparison, the CCN activity had a different dependence on thermodenuder treatment. At 25 degrees C, the CCN activity was independent of M(org), having an effective hygroscopicity parameter kappa(org) of 0.103 +/- 0.002. At 100 degrees C, however, kappa(org) varied from 0.105 for M(org) = 1.4 mu g m(-3) to 0.079 for M(org) = 37 mu g m(-3), indicating that for high mass concentration the CCN activity decreased with heat treatment. The interpretation is that the oligomer fraction of the SOM increased at elevated T, both because of particle-phase reactions that produced oligomers under those conditions and because of the relative enrichment of lower-volatility oligomers in the SOM accompanying the evaporation of higher-volatility monomers from the SOM. Oligomers have high effective molecular weights and thereby significantly influence CCN activity. The production rates of different types of oligomers depend on the types and concentrations of functional groups present in the SOM, which in turn are strongly influenced by M(org). We conclude with a hypothesis, which is supported by a detailed molecular kinetic model, that the changes in kappa(org) at high T were more significant at high compared to low M(org) because particle-phase SOM at high M(org) contained a mix of functional groups favorable to oligomerization, such as carbonyl groups.
Chen Q, Liu Y, Donahue NM, Shilling JE, Martin ST.
Particle-phase chemistry of secondary organic material: Modeled compared to measured O:C and H:C elemental ratios provide constraints. Environmental Science and Technology. 2011;45:4763-4770.
AbstractChemical mechanisms for the production of secondary organic material (SOM) are developed in focused laboratory studies but widely used in the complex modeling context of the atmosphere. Given this extrapolation, a stringent testing of the mechanisms is important. In addition to particle mass yield as a typical standard for model-measurement comparison, particle composition expressed as O:C and H:C elemental ratios can serve as a higher dimensional constraint. A paradigm for doing so is developed herein for SOM production from a C(5)-C(10)-C(15) terpene sequence, namely isoprene, a-pinene, and beta-caryopyhllene. The model MCM-SIMPOL is introduced based on the Master Chemical Mechanism (MCM v3.2) and a group contribution method for vapor pressures (SIMPOL). The O:C and H:C ratios of the SOM are measured using an Aerosol Mass Spectrometer (AMS). Detailed SOM-specific AMS calibrations for the organic contribution to the H(2)O(+) and CO(+) ions indicate that published O:C and H:C ratios for SOM are systematically too low. Overall, the measurement-model gap was small for particle mass yield but significant for particle-average elemental composition. The implication is that a key chemical pathway is missing from the chemical mechanism. The data can be explained by the particle-phase homolytic decomposition of organic hydroperoxides and subsequent alkyl-radical-promoted oligomerization.
Bertram AK, Martin ST, Hanna SJ, Smith ML, Bodsworth A, Chen Q, Kuwata M, Liu A, You Y, Zorn SR.
Predicting the relative humidities of liquid-liquid phase separation, efflorescence, and deliquescence of mixed particles of ammonium sulfate, organic material, and water using the organic-to-sulfate mass ratio of the particle and the oxygen-to-carbon ele. Atmospheric Chemistry and Physics. 2011;11:10995-11006.