This paper studies capital accumulation and equilibrium interest rates in stochastic production economies with the concern of social status. Given a specific utility function and production function, explicit solutions for capital accumulation and equilibrium interest rates have been derived. With the aid of steady-state distributions for capital stock, the effects of fiscal policies, social-status concern, and stochastic shocks on capital accumulation and equilibrium interest rates have been investigated. A significant finding of this paper is the demonstration of multiple stationary distributions for capital stocks and interest rates with the concern of social status.
Fine particles (PM2.5, i.e., particles with an aerodynamic diameter of <= 2.5 mu m) were collected from the air in August 2005, August-September 2006, and January-February 2007, in Beijing, China. The chemical compositions of particulate organic matter in the ambient samples were quantified by gas chromatography/mass spectrometry. The dominant compounds identified in summertime were n-alkanoic acids, followed by dicarboxylic acids and sugars, while sugars became the most abundant species in winter, followed by polycyclic aromatic hydrocarbons, n-alkanes, and n-alkanoic acids. The contributions of seven emission sources (i.e., gasoline/diesel vehicles, coal burning, wood/straw burning, cooking, and vegetative detritus) to particulate organic matter in PM2.5 were estimated using a chemical mass balance receptor model. The model results present the seasonal trends of source contributions to organic aerosols. Biomass burning (straw and wood) had the highest contribution in winter, followed by coal burning, vehicle exhaust, and cooking. The contribution of cooking was the highest in summer, followed by vehicle exhaust and biomass burning, while coal smoke showed only a minor contribution to ambient organic carbon.
Fine particles (PM2.5, i.e., particles with an aerodynamic diameter of <= 2.5 mu m) were collected from the air in August 2005, August-September 2006, and January-February 2007, in Beijing, China. The chemical compositions of particulate organic matter in the ambient samples were quantified by gas chromatography/mass spectrometry. The dominant compounds identified in summertime were n-alkanoic acids, followed by dicarboxylic acids and sugars, while sugars became the most abundant species in winter, followed by polycyclic aromatic hydrocarbons, n-alkanes, and n-alkanoic acids. The contributions of seven emission sources (i.e., gasoline/diesel vehicles, coal burning, wood/straw burning, cooking, and vegetative detritus) to particulate organic matter in PM2.5 were estimated using a chemical mass balance receptor model. The model results present the seasonal trends of source contributions to organic aerosols. Biomass burning (straw and wood) had the highest contribution in winter, followed by coal burning, vehicle exhaust, and cooking. The contribution of cooking was the highest in summer, followed by vehicle exhaust and biomass burning, while coal smoke showed only a minor contribution to ambient organic carbon.
Fine particles (PM2.5, i.e., particles with an aerodynamic diameter of <= 2.5 mu m) were collected from the air in August 2005, August-September 2006, and January-February 2007, in Beijing, China. The chemical compositions of particulate organic matter in the ambient samples were quantified by gas chromatography/mass spectrometry. The dominant compounds identified in summertime were n-alkanoic acids, followed by dicarboxylic acids and sugars, while sugars became the most abundant species in winter, followed by polycyclic aromatic hydrocarbons, n-alkanes, and n-alkanoic acids. The contributions of seven emission sources (i.e., gasoline/diesel vehicles, coal burning, wood/straw burning, cooking, and vegetative detritus) to particulate organic matter in PM2.5 were estimated using a chemical mass balance receptor model. The model results present the seasonal trends of source contributions to organic aerosols. Biomass burning (straw and wood) had the highest contribution in winter, followed by coal burning, vehicle exhaust, and cooking. The contribution of cooking was the highest in summer, followed by vehicle exhaust and biomass burning, while coal smoke showed only a minor contribution to ambient organic carbon.
Han W, Pi K, Wang WH, McCreary KM, Li Y, Bao W, Wei P, Shi J, Lau CN, Kawakami RK. Spin transport in graphite and graphene spin valves. Proceedings of SPIE - The International Society for Optical Engineering. 2009.
Fluorine ions can be effectively incorporated into AlGaN/GaN high electron mobility transistor (HEMT) structures, enabling the modulation of local potential and carrier density. The physical mechanism of fluorine incorporation in AlGaN/GaN heterojunctions is of fundamental importance to the stability of fluorine ions in AlGaN/GaN HEMTs. In this work, the molecular dynamic (MD) simulation method is used to calculate the potential energies of interstitial and substitutional fluorine atoms in AlGaN/GaN material system. Ziegler-Biersack-Littmark (ZBL), Lindhard-Sorensen (L-S) and Coulomb potential functions are applied in the MD simulation. The geometric lattice structures, spontaneous and piezoelectric polarizations, and temperature dependence are also included in the simulation. The activation energies associated with interstitial-substitutional and interstitial-interstitial diffusions are obtained. It is revealed that the fluorine ions are most likely located at the substitutional group-III cation sites S(III) and the diffusion of fluorine ions should be dominated by S(III)-interstitial process which exhibits an activation energy of 1.1 eV in Al(0.25)Ga(0.75)N and 1.4 eV in GaN in the presence of group-III vacancies. It is expected that the removal of group-III vacancies can significantly suppress the fluorine diffusion, which in turn, leads to excellent fluorine stability in III-nitride materials. (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim