{{High-spin states of Yb-156 have been studied via the Sm-144(O-16,4n)Yb-156 fusion-evaporation reaction at beam energy 102 MeV. The positive-parity yrast band and negative-parity cascade have been extended up to higher-spin states, respectively. The characteristics of the negative-parity sequence above the 25 state may related to the excitation from the nucleon in the Z = 64
The diffusion properties of fluorine ions in GaN are investigated by means of Time-of-Flight secondary ion mass spectroscopy. Instead of incorporating fluorine ions close to the sample surface by plasma, fluorine ion implantation with an energy of 180 keV is utilized to implant fluorine ions deep into the GaN bulk, preventing the surface effects from affecting the data analysis. It is found that the diffusion of fluorine-ions in GaN is a dynamic process, featuring a two-step process. A defect-assisted diffusion model is proposed to account for the experimental observations. Fluorine ions tend to occupy Ga vacancies induced by fluorine ion implantation and diffuse to vacancy rich regions. The fluorine ions become stable after continuous vacancy chains are significantly reduced or removed by thermal annealing. (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
The increase of biodiversity from poles to equator is one of the most pervasive features of nature. For 2 centuries since von Humboldt, Wallace, and Darwin, biogeographers and ecologists have investigated the environmental and historical factors that determine the latitudinal gradient of species diversity, but the underlying mechanisms remain poorly understood. The recently proposed metabolic theory of ecology (MTE) aims to explain ecological patterns and processes, including geographical patterns of species richness, in terms of the effects of temperature and body size on the metabolism of organisms. Here we use 2 comparable databases of tree distributions in eastern Asia and North America to investigate the roles of environmental temperature and spatial scale in shaping geographical patterns of species diversity. We find that number of species increases exponentially with environmental temperature as predicted by the MTE, and so does the rate of spatial turnover in species composition (slope of the species-area relationship). The magnitude of temperature dependence of species richness increases with spatial scale. Moreover, the relationship between species richness and temperature is much steeper in eastern Asia than in North America: in cold climates at high latitudes there are more tree species in North America, but the reverse is true in warmer climates at lower latitudes. These patterns provide evidence that the kinetics of ecological and evolutionary processes play a major role in the latitudinal pattern of biodiversity.