Chapter 17 The Different Toxicity and Mechanism of Titanium Dioxide (TiO2) and Titanate Nanotubes (TNTs) on Escherichia coli

Citation:

Dang C, Jiang H, Zheng M, Li Z, Liu W, Fu J. Chapter 17 The Different Toxicity and Mechanism of Titanium Dioxide (TiO2) and Titanate Nanotubes (TNTs) on Escherichia coli. In: Emerging Nanotechnologies for Water Treatment. The Royal Society of Chemistry; 2022. pp. 507-522.

摘要:

As typical titanium nanomaterials, TiO2 and titanate nanotubes (TNTs) are extensively used. Although the toxicity of nano-TiO2 under solar light has been investigated, it is not enough to evaluate its environmental toxicity because the dark environment is also important in the natural environment. In addition, little is known about the environmental toxicity and mechanism of the emerging TNTs. In this study, we investigated the toxicity of nano-TiO2 and TNTs based on the inactivation performance on Escherichia coli cells under simulated solar light and in a dark chamber, and their toxicity mechanisms were explored on a subcellular level. The inactivation performance was: nano-TiO2-solar (100.0%) > TNTs-solar (62.7%) > TNTs-dark (36.6%) > TiO2-dark (0.5%). The excellent inactivation performance of nano-TiO2 under solar light is caused by the large amount of active free radicals attacking cell organelles until peroxidation and death, which is due to the strong photocatalytic properties. The lower inactivation ability of nano-TiO2 in the dark was due to the absence of radicals and its accessible physical morphology. For TNTs, the inactivation ability under solar light is derived from a combination of its weak photocatalytic performance and morphological effects, and TNTs in a dark environment can only attack cells via physical piercing.

Website