科研成果 by Year: 2010

2010
Guo S, Hu M, Wang ZB, Slanina J, Zhao YL. Size-resolved aerosol water-soluble ionic compositions in the summer of Beijing: implication of regional secondary formation. Atmospheric Chemistry and PhysicsAtmospheric Chemistry and Physics. 2010;10:947-959.Abstract
To characterize aerosol pollution in Beijing, size-resolved aerosols were collected by MOUDIs during CAREBEIJING-2006 field campaign at Peking University (urban site) and Yufa (upwind rural site). Fine particle concentrations (PM1.8 by MOUDI) were 99.8 +/- 77.4 mu g/m(3) and 78.2 +/- 58.4 mu g/m(3), with PM1.8/PM10 ratios of 0.64 +/- 0.08 and 0.76 +/- 0.08 at PKU and Yufa, respectively, and secondary compounds accounted for more than 50% in fine particles. PMF model analysis was used to resolve the particle modes. Three modes were resolved at Yufa, representing condensation, droplet and coarse mode. However, one more droplet mode with bigger size was resolved, which was considered probably from regional transport. Condensation mode accounted for 10%-60% of the total mass at both sites, indicating that the gas-to-particle condensation process was important in summer. The formation of sulfate was mainly attributed to in-cloud or aerosol droplet process (PKU 80%, Yufa 70%) and gas condensation process (PKU 14%, Yufa 22%). According to the thermodynamic instability of NH4NO3, size distributions of nitrate were classified as three categories by RH. The existence of Ca(NO3)(2) in droplet mode indicated the reaction of HNO3 with crustal particles was also important in fine particles. A rough estimation was given that 69% of the PM10 and 87% of the PM1.8 in Beijing urban were regional contributions. Sulfate, ammonium and oxalate were formed regionally, with the regional contributions of 90%, 87% and 95% to PM1.8. Nitrate formation was local dominant. In summary regional secondary formation led to aerosol pollution in the summer of Beijing.
Yue DL, Hu M, Wu ZJ, Guo S, Wen MT, Nowak A, Wehner B, Wiedensohler A, Takegawa N, Kondo Y, et al. Variation of particle number size distributions and chemical compositions at the urban and downwind regional sites in the Pearl River Delta during summertime pollution episodes. Atmospheric Chemistry and PhysicsAtmospheric Chemistry and Physics. 2010;10:9431-9439.Abstract
In order to characterize the features of particulate pollution in the Pearl River Delta (PRD) in the summer, continuous measurements of particle number size distributions and chemical compositions were simultaneously performed at Guangzhou urban site (GZ) and Back-garden downwind regional site (BG) in July 2006. Particle number concentration from 20 nm to 10 mu m at BG was (1.7 +/- 0.8) x 10(4) cm(-3), about 40% lower than that at GZ, (2.9 +/- 1.1) x 10(4) cm(-3). The total particle volume concentration at BG was 94 +/- 34 mu m(3) cm(-3), similar to that at GZ, 96 +/- 43 mu m(3) cm(-3). More 20-100 nm particles, significantly affected by the traffic emissions, were observed at GZ, while 100-660 nm particle number concentrations were similar at both sites as they are more regional. PM(2.5) values were similar at GZ (69 +/- 43 mu g m(-3)) and BG (69 +/- 58 mu g m(-3)) with R(2) of 0.71 for the daily average PM(2.5) at these two sites, indicating the fine particulate pollution in the PRD region to be regional. Two kinds of pollution episodes, the accumulation pollution episode and the regional transport pollution episode, were observed. Fine particles over 100 nm dominated both number and volume concentrations of total particles during the late periods of these pollution episodes. Accumulation and secondary transformation are the main reasons for the nighttime accumulation pollution episode. SO(4)(2-), NO(3)(-), and NH(4)(+) accounted for about 60% in 100-660 nm particle mass and PM(2.5) increase. When south or southeast wind prevailed in the PRD region, regional transport of pollutants took place. Regional transport contributed about 30% to fine particulate pollution at BG during a regional transport case. Secondary transformation played an important role during regional transport, causing higher increase rates of secondary ions in PM(1.0) than other species and shifting the peaks of sulfate and ammonium mass size distributions to larger sizes. SO(4)(2-), NO(3)(-), and NH(4)(+) accounted for about 70% and 40% of PM(1.0) and PM(2.5), respectively.
He LY, Lin Y, Huang XF, Guo S, Xue L, Su Q, Hu M, Luan SJ, Zhang YH. Characterization of high-resolution aerosol mass spectra of primary organic aerosol emissions from Chinese cooking and biomass burning. Atmospheric Chemistry and PhysicsAtmospheric Chemistry and Physics. 2010;10:11535-11543.Abstract
Aerosol mass spectrometry has proved to be a powerful tool to measure submicron particulate composition with high time resolution. Factor analysis of mass spectra (MS) collected worldwide by aerosol mass spectrometer (AMS) demonstrates that submicron organic aerosol (OA) is usually composed of several major components, such as oxygenated (OOA), hydrocarbon-like (HOA), biomass burning (BBOA), and other primary OA. In order to help interpretation of component MS from factor analysis of ambient OA datasets, AMS measurements of different primary sources is required for comparison. Such work, however, has been very scarce in the literature, especially for high resolution MS (HR-MS) measurements, which performs improved characterization by separating the ions of different elemental composition at each m/z in comparison with unit mass resolution MS (UMR-MS) measurements. In this study, primary emissions from four types of Chinese cooking (CC) and six types of biomass burning (BB) were simulated systematically and measured using an Aerodyne High-Resolution Time-of-Flight AMS (HR-ToF-AMS). The MS of the CC emissions show high similarity, with m/z 41 and m/z 55 being the highest signals; the MS of the BB emissions also show high similarity, with m/z 29 and m/z 43 being the highest signals. The MS difference between the CC and BB emissions is much bigger than that between different CC (or BB) types, especially for the HR-MS. The O/C ratio of OA ranges from 0.08 to 0.13 for the CC emissions and from 0.18 to 0.26 for the BB emissions. The UMR ions of m/z 43, m/z 44, m/z 57, and m/z 60, usually used as tracers in AMS measurements, were examined for their HR-MS characteristics in the CC and BB emissions. In addition, the MS of the CC and BB emissions are also compared with component MS from factor analysis of ambient OA datasets observed in China, as well as with other AMS measurements of primary sources in the literature. The MS signatures of cooking and biomass burning emissions revealed in this study can be used as important reference for factor analysis of ambient OA datasets, especially for the relevant studies in East Asia.
Yue DL, Hu M, Wu ZJ, Guo S, Wen MT, Nowak A, Wehner B, Wiedensohler A, Takegawa N, Kondo Y, et al. Variation of particle number size distributions and chemical compositions at the urban and downwind regional sites in the Pearl River Delta during summertime pollution episodes. Atmospheric Chemistry and PhysicsAtmospheric Chemistry and Physics. 2010;10:9431-9439.Abstract
In order to characterize the features of particulate pollution in the Pearl River Delta (PRD) in the summer, continuous measurements of particle number size distributions and chemical compositions were simultaneously performed at Guangzhou urban site (GZ) and Back-garden downwind regional site (BG) in July 2006. Particle number concentration from 20 nm to 10 mu m at BG was (1.7 +/- 0.8) x 10(4) cm(-3), about 40% lower than that at GZ, (2.9 +/- 1.1) x 10(4) cm(-3). The total particle volume concentration at BG was 94 +/- 34 mu m(3) cm(-3), similar to that at GZ, 96 +/- 43 mu m(3) cm(-3). More 20-100 nm particles, significantly affected by the traffic emissions, were observed at GZ, while 100-660 nm particle number concentrations were similar at both sites as they are more regional. PM(2.5) values were similar at GZ (69 +/- 43 mu g m(-3)) and BG (69 +/- 58 mu g m(-3)) with R(2) of 0.71 for the daily average PM(2.5) at these two sites, indicating the fine particulate pollution in the PRD region to be regional. Two kinds of pollution episodes, the accumulation pollution episode and the regional transport pollution episode, were observed. Fine particles over 100 nm dominated both number and volume concentrations of total particles during the late periods of these pollution episodes. Accumulation and secondary transformation are the main reasons for the nighttime accumulation pollution episode. SO(4)(2-), NO(3)(-), and NH(4)(+) accounted for about 60% in 100-660 nm particle mass and PM(2.5) increase. When south or southeast wind prevailed in the PRD region, regional transport of pollutants took place. Regional transport contributed about 30% to fine particulate pollution at BG during a regional transport case. Secondary transformation played an important role during regional transport, causing higher increase rates of secondary ions in PM(1.0) than other species and shifting the peaks of sulfate and ammonium mass size distributions to larger sizes. SO(4)(2-), NO(3)(-), and NH(4)(+) accounted for about 70% and 40% of PM(1.0) and PM(2.5), respectively.
Guo S, Hu M, Wang ZB, Slanina J, Zhao YL. Size-resolved aerosol water-soluble ionic compositions in the summer of Beijing: implication of regional secondary formation. Atmospheric Chemistry and PhysicsAtmospheric Chemistry and Physics. 2010;10:947-959.Abstract
To characterize aerosol pollution in Beijing, size-resolved aerosols were collected by MOUDIs during CAREBEIJING-2006 field campaign at Peking University (urban site) and Yufa (upwind rural site). Fine particle concentrations (PM1.8 by MOUDI) were 99.8 +/- 77.4 mu g/m(3) and 78.2 +/- 58.4 mu g/m(3), with PM1.8/PM10 ratios of 0.64 +/- 0.08 and 0.76 +/- 0.08 at PKU and Yufa, respectively, and secondary compounds accounted for more than 50% in fine particles. PMF model analysis was used to resolve the particle modes. Three modes were resolved at Yufa, representing condensation, droplet and coarse mode. However, one more droplet mode with bigger size was resolved, which was considered probably from regional transport. Condensation mode accounted for 10%-60% of the total mass at both sites, indicating that the gas-to-particle condensation process was important in summer. The formation of sulfate was mainly attributed to in-cloud or aerosol droplet process (PKU 80%, Yufa 70%) and gas condensation process (PKU 14%, Yufa 22%). According to the thermodynamic instability of NH4NO3, size distributions of nitrate were classified as three categories by RH. The existence of Ca(NO3)(2) in droplet mode indicated the reaction of HNO3 with crustal particles was also important in fine particles. A rough estimation was given that 69% of the PM10 and 87% of the PM1.8 in Beijing urban were regional contributions. Sulfate, ammonium and oxalate were formed regionally, with the regional contributions of 90%, 87% and 95% to PM1.8. Nitrate formation was local dominant. In summary regional secondary formation led to aerosol pollution in the summer of Beijing.
He LY, Lin Y, Huang XF, Guo S, Xue L, Su Q, Hu M, Luan SJ, Zhang YH. Characterization of high-resolution aerosol mass spectra of primary organic aerosol emissions from Chinese cooking and biomass burning. Atmospheric Chemistry and PhysicsAtmospheric Chemistry and Physics. 2010;10:11535-11543.Abstract
Aerosol mass spectrometry has proved to be a powerful tool to measure submicron particulate composition with high time resolution. Factor analysis of mass spectra (MS) collected worldwide by aerosol mass spectrometer (AMS) demonstrates that submicron organic aerosol (OA) is usually composed of several major components, such as oxygenated (OOA), hydrocarbon-like (HOA), biomass burning (BBOA), and other primary OA. In order to help interpretation of component MS from factor analysis of ambient OA datasets, AMS measurements of different primary sources is required for comparison. Such work, however, has been very scarce in the literature, especially for high resolution MS (HR-MS) measurements, which performs improved characterization by separating the ions of different elemental composition at each m/z in comparison with unit mass resolution MS (UMR-MS) measurements. In this study, primary emissions from four types of Chinese cooking (CC) and six types of biomass burning (BB) were simulated systematically and measured using an Aerodyne High-Resolution Time-of-Flight AMS (HR-ToF-AMS). The MS of the CC emissions show high similarity, with m/z 41 and m/z 55 being the highest signals; the MS of the BB emissions also show high similarity, with m/z 29 and m/z 43 being the highest signals. The MS difference between the CC and BB emissions is much bigger than that between different CC (or BB) types, especially for the HR-MS. The O/C ratio of OA ranges from 0.08 to 0.13 for the CC emissions and from 0.18 to 0.26 for the BB emissions. The UMR ions of m/z 43, m/z 44, m/z 57, and m/z 60, usually used as tracers in AMS measurements, were examined for their HR-MS characteristics in the CC and BB emissions. In addition, the MS of the CC and BB emissions are also compared with component MS from factor analysis of ambient OA datasets observed in China, as well as with other AMS measurements of primary sources in the literature. The MS signatures of cooking and biomass burning emissions revealed in this study can be used as important reference for factor analysis of ambient OA datasets, especially for the relevant studies in East Asia.