个人简介
马连韬,北京大学软件工程国家工程研究中心研究型助理教授(Research Assistant Professor,助理研究员),北京大学计算机软件与理论博士毕业,北京大学计算机系博雅博士后(已出站)。长期从事医信交叉、电子病历数据深度学习可解释分析研究工作,研究成果服务于智慧医疗终末期慢性肾病患者、淋巴瘤患者、新冠肺炎重症患者诊疗辅助等。
研究兴趣
- 医信交叉,智慧医疗,预后预测,诊疗辅助
- 多变量时间序列电子病历数据分析
- 可解释深度学习
- 临床应用:终末期慢性肾病、淋巴瘤、产科
科研项目
- 2025.01-2025.12 R Consortium 国际R语言联合体, Infrastructure Steering Committee (ISC) Grant Program R语言基础设施建设督导项目,面向临床数据科学家的电子病历建模方法基建,联合主持(全球每年10项,2016年以来中国科研机构首次获批)
- 2025.01-2027.12 国家自然科学基金,在研,主持
- 2021.07-2023.07 博士后科学基金特别站前资助,已结题,主持(全国软件工程学科同年度仅 3 人获批)
- 2023.01-2023.07 博士后科学基金面上资助,已结题,主持
- 2023.12-2025.06 ***后勤保障,医信交叉***智能监测与推荐系统,在研,主持
- 2024.01-2026.12 国家自然科学基金区域联合重点项目,在研,项目骨干
- 2023.01-2025.12 国家自然科学基金专项,在研,项目骨干
- 2019.10-2021.10 国家科技部, 国家重点研发计划, 前沿科技创新专项, 已结题, 参与
- 2025.01-2027.12 北京市自然基金委,前沿专项,项目骨干
成果发表
- Ma, L., Zhang, C., Gao, J., Jiao, X., Yu, Z., Zhu, Y., ... & Wang, T. (2023). Mortality prediction with adaptive feature importance recalibration for peritoneal dialysis patients. Patterns, 4(12). Cell Patterns子刊, 首页封面文章, 第一作者.
- Wang, T., ... & Ma, L*. (2025). Adaptive Activation Steering: A Tuning-Free LLM Truthfulness Improvement Method for Diverse Hallucinations Categories. Web Conference (WWW). 计算机学会CCF-A类最高级推荐国际学术会议, 通讯作者.
- Wang, Z., ... & Ma, L*. (2025). ColaCare: Enhancing Electronic Health Record Modeling through Large Language Model-Driven Multi-Agent Collaboration. Web Conference (WWW). CCF-A, 通讯作者.
- Liao, W., Zhu, Y., Wang, Z., Chu, X., Wang, Y., & Ma, L*. (2024). Learnable Prompt as Pseudo-Imputation: Reassessing the Necessity of Traditional EHR Data Imputation in Downstream Clinical Prediction. In Proceedings of the ACM SIGKDD international conference on knowledge discovery & data mining. CCF-A, 通讯作者.
- Gao, J., Zhu, Y., Wang, W., Wang, Z., Dong, G., Tang, W., ... & Ma, L.* (2024). A comprehensive benchmark for COVID-19 predictive modeling using electronic health records in intensive care. Patterns, 5(4). Cell Patterns子刊, Q1, 通讯作者.
- Yu, Z., Zhang, C., Wang, Y., Tang, W., Wang, J., & Ma, L.* (2024, April). Predict and Interpret Health Risk Using Ehr Through Typical Patients. In ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 1506-1510). IEEE. CCF-B, 通讯作者.
- Zhu, Y., Wang, Z., He, L., Xie, S., Zheng, X., Ma, L.*, & Pan, C.* (2024, October). PRISM: Mitigating EHR Data Sparsity via Learning from Missing Feature Calibrated Prototype Patient Representations. In Proceedings of the 33rd ACM International Conference on Information and Knowledge Management (CIKM) (pp. 3560-3569). CCF-B, 通讯作者.
- Wang, T., Zhu, Y., Wang, Z., Tang, W.*, Zhao, X., Wang, T., ... Ma, L.*, & Wang, L*. (2024). Protocol to process follow-up electronic medical records of peritoneal dialysis patients to train AI models. Cell STAR protocols, 5(4), 103335. 编辑邀稿, 通讯作者.
- Wu, H., Zhu, Y., Wang, Z., Zheng, X., Wang, L., Tang, W., ... & Ma, L.* EHRFlow: A Large Language Model-Driven Iterative Multi-Agent Electronic Health Record Data Analysis Workflow. In Artificial Intelligence and Data Science for Healthcare: Bridging Data-Centric AI and People-Centric Healthcare. KDD 2024 Workshop, Oral, 录取率20%, 通讯作者.
- Hong, S., Yin, D., Tang, G., Fu, T., Ma, L., Gao, J., ... & Zhang, L. (2024, August). Artificial Intelligence and Data Science for Healthcare: Bridging Data-Centric AI and People-Centric Healthcare. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (pp. 6720-6721). KDD 2024 Workshop联合主席.
- MA L, MA X, GAO J, et al. Distilling knowledge from publicly available online emr data to emerging epidemic for prognosis[C]//Proceedings of the Web Conference 2021. 2021: 3558-3568. 计算机学会 CCF-A 类最高级推荐国际顶级会议, 第一作者,
- MA L, ZHANG C, WANG Y, et al. Concare: Personalized clinical feature embedding via capturing the healthcare context[C]//Proceedings of the AAAI Conference on Artificial Intelligence: volume 34. 2020: 833-840. 计算机学会 CCF-A 类最高级推荐国际顶级会议, 第一作者,
- MA L, GAO J, WANG Y, et al. Adacare: Explainable clinical health status representation learning via scale-adaptive feature extraction and recalibration[C]//ThirtyFourth AAAI Conference on Artificial Intelligence. 2020. 计算机学会 CCF-A 类最高级推荐国际顶级会议, 第一作者.
- 马连韬, 张超贺, 焦贤锋, 王亚沙, 唐雯, 赵俊峰. Dr. Deep: 基于医疗特征上下文学习的患者健康状态可解释评估. 计算机研究与发展. 2021. CCF-A 中文核心, 第一作者.
- 马连韬, 王亚沙, 彭广举, 等. 基于公交车轨迹数据的道路 GPS 环境友好性评估[J]. 计算机研究与发展, 2016, 53(12): 2694-2707. CCF-A 中文核心, 第一作者.
- GAO J, ZHU Y, WANG W, Wang Z, Dong G, Tang W, Wang H, Wang Y, Harrison E, MA L*. A comprehensive benchmark for covid-19 predictive modeling using electronic health records in intensive care. AMIA Summit. 2023. 美国医学信息学协会国际报告, 通讯作者.
- Liao W, Liao Y, Fan Z, Zhang J, Li S, Yang J, Ma L*. Multi-modal Medical Vision-and-Language Learning for Retinal Vein Occlusion Classification. Health Data Science Summit. 2023. HDS Summit 口头报告, 会议优秀摘要提名, 通讯作者.
- Zhu Y, An J, Zhou E, An L, Gao J, Li H, Feng H, Hou B, Tang W, Pan C, Ma L*. Mitigating Bias in Healthcare Data through Multi-Level and Multi-Sensitive-Attribute Reweighting Method. Health Data Science Summit. 2023. HDS Summit 墙报, 通讯作者.
- Zhang C, Gao X, Ma L, et al. GRASP: Generic Framework for Health Status Representation Learning Based on Incorporating Knowledge from Similar Patients; 35th AAAI Conference on Artificial Intelligence (AAAI), 2021. CCF-A.
- Zhang C, Chu X, Ma L, Zhu Y, Wang Y, Wang J, Zhao J. M3care: Learning with missing modalities in multimodal healthcare data. InProceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining 2022 Aug 14 (pp. 2418-2428). CCF-A.
- Ma X, Wang Y, Chu X, Ma L, et al. Patient Health Representation Learning via Correlational Sparse Prior of Medical Features. IEEE Transactions on Knowledge and Data Engineering (TKDE), 2022. CCF-A.
- Ma X, Chu X, Wang Y, Lin Y, Zhao J, Ma L, et al. Fused Gromov-Wasserstein Graph Mixup for Graph-level Classifications. Advances in Neural Information Processing Systems (NeurIPS), 2023. CCF-A.
- Wang J, Wang Y, Zhang D, Wang F, He Y, Ma L. PSAllocator: Multi-task allocation for participatory sensing with sensing capability constraints. InProceedings of the 2017 ACM Conference on Computer Supported Cooperative Work and Social Computing 2017 Feb 25 (pp. 1139-1151). CCF-A.
- 王亚沙, 马连韬, 等. 基于时间窗口切割的健康风险关键事件检测方法及系统. 国家发明专利. 2022. CN112205965B. 第一学生发明人,已授权.
- 王亚沙, 马连韬, 等. 一种患者潜在重要信息的确定方法和装置. 国家发明专利. 2023. CN112289444B. 第一学生发明人,已授权.
- 吕云翔, 马连韬, 等. 机器学习基础 (大数据技术与应用专业规划教材). 清华大学出版社. 2018. 第一学生作者.
受邀报告
- 2024.12.28 徐州市健康管理学会,慢性肾脏病预防与控制,腹膜透析患者饮食营养推荐
- 2024.12.22 华北血液肿瘤免疫治疗研讨会,滤泡性淋巴瘤一线治疗后R维持获益评估与用药推荐
- 2024.12.06 中国产科质量控制大会,大语言模型支持的产科医患沟通辅助
- 2024.10.28 International Symposium on High Confidence Software,High Confidence Software on AI-Medicine Intersection
- 2024.09.02 Seminar at University of Edinburgh,Building Trustworthy and Accessible Clinical Prediction Framework
- 2024.06.01 内蒙古医院协会血液净化学术会议,腹膜透析患者可解释预后预测
会议举办
- 2024.10.31 Seminar on Advancing Healthcare Informatics, Insights from Cell Press Patterns/Matter/iScience and Peking University
- 2024.08.26 SIGKDD Workshop, Artificial Intelligence and Data Science for Healthcare, Bridging Data-Centric AI and People-Centric Healthcare,Barcelona Spain
- 2024.01.07 AI in Medicine League (AIMEL)
课程讲授
- 2024.12 徐州市第一人民医院,人工智能医疗交叉
- 2024.12 北京大学,工学院,机器学习与大数据分析
- 2024.11 北京大学天津滨海新一代信息技术研究院,天津财经大学,机器学习与数据挖掘
- 2024.10 北京大学,软件与微电子学院,软件工程前沿(博士生必修课)
- 2024.01 北京大学,计算机学院,ICS
发展履历
- 2023.07-至今 北京大学 软件工程国家工程研究中心 助理研究员
- 2021.07-2023.07 北京大学 计算机系 博雅博士后 (合作导师:王亚沙教授)
- 2016.07-2021.07 北京大学 信息科学技术学院 理学博士 (导师:谢冰教授)
- 2012.07-2016.07 北京航空航天大学 软件学院 工学学士(导师:李红裔教授、吕云翔教授)