Liu Z, Sun X, Fu J, Liu W, Cai Z.
Elevated nitrate promoted photodegradation of PAHs in aqueous phase: Implications for the increased nutrient discharge. Journal of Hazardous Materials [Internet]. 2023;443:130143.
访问链接AbstractPolycyclic aromatic hydrocarbons (PAHs) are frequently released in aqueous phase by oil spill or from other sources, and photochemical oxidation is one of their major weathering processes. In this study, the photochemical behavior of phenanthrene (PHE, as a representative PAH) were studied and the effects of nitrogenous compounds were evaluated. The results showed that nitrate was an effective photosensitizer for improving the photodegradation of PHE, but the promoting effect was less effective in seawater due to the presence of halogen ions; the ammonia played a negligible role on PHE degradation. The photochemical ionization was a key process for PHE degradation, it can be retarded due to the quenching of triplet excited state by dissolved oxygen, and the inhibition was most prominent in fresh water. The presence of nitrate increased the steady state concentration of •OH from 2.08 × 10−15 M to 1.04 × 10−14 M in fresh water, and from 1.5 × 10−16 M to 2.08 × 10−15 M in seawater. The secondary-order reaction rate constant between PHE and •OH (k•OH,PHE) was determined as 5.70 × 109 M−1 s−1. Similar trend was observed for 1O2. The contribution of •OH to PHE removal was more prominent in fresh water than in seawater due to the quenching effects of halogen, and the increasing of nitrate enlarged the contribution of •OH. Two possible PHE degradation pathways were proposed based on GC-MS analysis and DFT calculation. The Quantitative Structure-activity Relationship (QSAR) evaluation showed that some degradation intermediates were more toxic than PHE, but the total environmental risk was still diminished due to the low percentage of toxic intermediates. This study provided theoretical and experimental insights into the influence of nitrogenous compounds on the photodegradation of PHAs in water environment.
Zong Y, Shao Y, Ji W, Zeng Y, Xu J, Liu W, Xu L, Wu D.
Trace Mn(II)-catalyzed periodate oxidation of organic contaminants not relying on any transient reactive species: The substrate-dependent dual roles of in-situ formed colloidal MnO2. Chemical Engineering Journal [Internet]. 2023;451:139106.
访问链接AbstractTraditional advanced oxidation processes (AOPs) generally suffer from the inevitable deactivation of catalysts and the ineffective consumption of transient reactive species (TRSs) that compromise the efficiency in destructing aqueous contaminants. Herein, it was interestingly found that trace Mn(II) could robustly catalyze the oxidation of organic contaminants by periodate (PI), with the performance was much better than the representative TRSs-dominated AOPs (i.e., the Fe(II)-activated hydrogen peroxide, peroxymonosulfate (PMS), peroxydisulfate and PI processes). Multiple lines of evidence excluded the oxidative contributions of TRSs, instead the stoichiometric formation of colloidal MnO2 via the condensation of di-μ-oxo-bridged Mn(IV) cluster was confirmed by UV-vis, X-ray absorption near edge structure spectroscopy and density functional theory calculation. Dependent on the structure of substrate, MnO2 colloids solely or simultaneously served as oxidant and catalyst for the enhanced treatment performance. Benefiting from the non-TRSs-involved oxidation strategy and the catalytic effects of Mn species, the trace-Mn(II)/PI process even outperformed the Co(II)-activated PMS counterpart (i.e., one of the most efficient AOPs known at present) on oxidant utilization efficiency. This study not only elucidated the roles of Mn(II) and colloidal MnO2 in PI-mediated contaminant degradation, but also signified the superiority of trace catalyst-assisted process without TRSs involvement in avoiding undesired side reactions and maximizing oxidation efficiency.
Wang T, Zhao C, Meng L, Li Y, Chu H, Wang F, Tao Y, Liu W, Wang C-C.
In-situ-construction of BiOI/UiO-66 heterostructure via nanoplate-on-octahedron: A novel p-n heterojunction photocatalyst for efficient sulfadiazine elimination. Chemical Engineering Journal [Internet]. 2023;451:138624.
访问链接AbstractSulfadiazine (SDZ), as a broad-spectrum pharmaceutical antibiotic, has drawn extensive attention owing to its wide application and persistence. Photocatalytic oxidation has been considered as a high-efficiency and environment-friendly technology for degrading organic contaminants. A novel BiOI/UiO-66 p-n heterojunction (BiU-x) was fabricated via the in-situ deposition of p-type BiOI nanoplates on n-type UiO-66 octahedrons with the aid of a controlled precipitation method. The optimizing BiU-9 heterojunction exhibited a remarkably enhanced photocatalytic efficiency in removing SDZ, in which the SDZ (5 mg/L) removal efficiency over BiU-9 (0.5 g/L) reached nearly 100 % within 90 min of visible light irradiation. The influence of some important environmental factors (e.g., photocatalyst dosage, pH, co-existing inorganic anions and real sunlight irradiation) were systematically investigated. Such improvement mechanism should be assigned to the following three factors. Firstly, the introduction of narrow gap semiconductor BiOI effectively improved photo adsorption capacity. Secondly, benefiting by the large specific surface area, the involvement of UiO-66 contributed to boost the surface active sites. Most importantly, an internal electric field at the contact interface between UiO-66 and BiOI accelerated the separation of photo-generated electrons and holes. Furthermore, ·O2− and photo-generated holes were identified as the dominating reactive species accounting for the SDZ removal. The decomposition pathways of SDZ and ecotoxicities of the intermediates were analyzed via combing with LC-MS/MS and T.E.S.T theoretical calculation. This work may provide an alternative way for enhanced photocatalytic performance of MOF-based materials through construction of p-n heterojunction with bismuth-based semiconductors.