Sulphate-reducing microorganisms, or SRMs, are crucial to organic decomposition, the sulphur cycle, and the formation of pyrite. Despite their low energy-yielding metabolism and intense competition with other microorganisms, their ability to thrive in natural habitats often lacking sufficient substrates remains an enigma. This study delves into how Desulfovibrio desulfuricans G20, a representative SRM, utilizes photoelectrons from extracellular sphalerite (ZnS), a semiconducting mineral that often coexists with SRMs, for its metabolism and energy production. Batch experiments with sphalerite reveal that the initial rate and extent of sulphate reduction by G20 increased by 3.6 and 3.2 times respectively under light conditions compared to darkness, when lactate was not added. Analyses of microbial photoelectrochemical, transcriptomic, and metabolomic data suggest that in the absence of lactate, G20 extracts photoelectrons from extracellular sphalerite through cytochromes, nanowires, and electron shuttles. Genes encoding movement and biofilm formation are upregulated, suggesting that G20 might sense redox potential gradients and migrate towards sphalerite to acquire photoelectrons. This process enhances the intracellular electron transfer activity, sulphur metabolism, and ATP production of G20, which becomes dominant under conditions of carbon starvation and extends cell viability in such environments. This mechanism could be a vital strategy for SRMs to survive in energy-limited environments and contribute to sulphur cycling.
Biotransformation of ferrihydrite (Fh) by dissimilatory iron-reducing bacteria (DIRB) into various secondary minerals assemblages widely occurs in anaerobic environments. While respiration-driven supply rates of Fe(II) have been proposed as a primary factor controlling kinetics and mineral products of this process, the specific mechanism by which DIRB respiration rates regulate Fh biotransformation remains elusive. Here, to minimize the complex effects of microbial cells, we conducted Fh transformation using 1 mM biogenic Fe(II) (BioFe(II)), added at different rates to mimic diverse respiration-driven supply rates of Fe(II) by DIRB. For comparison, transformation experiments with FeSO4 alone and FeSO4 plus citrate (CitFe(II)) added at the corresponding supply rates were performed to decouple the specific effects of Fe(II) addition rates and extracellular polymeric substances (EPS) associated with BioFe(II). Decreasing FeSO4 supply rates favored the transformation of Fh to lepidocrocite (Lp) over to Gt and the subsequent transformation of Lp to magnetite (Mt), altering the transformation pathway from Fh → Lp/Gt → Gt to Fh → Lp/Gt → Mt/Gt. These results underscore the significant effect of aqueous Fe(II) supply rates on the competition of olation and oxolation of labile Fe(III) intermediates into different secondary minerals. In the experiments with BioFe(II) and CitFe(II), although EPS or citrate slightly increased Fe(II) adsorption and Fe(III)labile generation, the increase in sorbed Fe(II) was minimal compared to the variations in aqueous Fe(II) concentrations caused by the different Fe(II) supply rates. At the same Fe(II) supply rates, EPS or citrate notably inhibited the transformation of Fh to Gt and the further conversion of Lp, altering the pathway from Fh → Mt/Gt/Lp to primarily Fh → Lp. These effects became more pronounced with the decrease of BioFe(II) and CitFe(II) supply rates. Our findings provide new insights into how DIRB respiration rates control kinetics, pathways, and mineral products of Fh transformation, which is crucial for elucidating the relevant biogeochemical cycling of nutrients and (im)mobilization of contaminants.
Ferrihydrite (Fh) is a major Fe(III)-(oxyhydr)oxide nanomineral distinguished by its poor crystallinity and thermodynamic metastability. While it is well known that in suboxic conditions aqueous Fe(II) rapidly catalyzes Fh transformation to more stable crystalline Fe(III) phases such as lepidocrocite (Lp) and goethite (Gt), because of the low solubility of Fe(III) the mass transfer pathways enabling these rapid transformations have remained unclear for decades. Here, using a selective extractant, we isolated and quantified a critical labile Fe(III) species, one that is more reactive than Fe(III) in Fh, formed by the oxidation of aqueous Fe(II) on the Fh surface. Experiments that compared time-dependent concentrations of solid-associated Fe(II) and this labile Fe(III) against the kinetics of phase transformation showed that its accumulation is directly related to Lp/Gt formation in a manner consistent with the classical nucleation theory. 57Fe isotope tracer experiments confirm the oxidized Fe(II) origin of labile Fe(III). The transformation pathway as well as the accelerating effect of Fe(II) can now all be explained on a unified basis of the kinetics of Fe(III) olation and oxolation reactions necessary to nucleate and sustain growth of Lp/Gt products, rates of which are greatly accelerated by labile Fe(III).
Adsorption kinetics and conformational changes of a model protein, bovine serum albumin (BSA, 0.1, 0.5, or 1.0 g/L), on the surface of hematite (α-Fe2O3) particles in 39 ± 9, 68 ± 9, and 103 ± 8 nm, respectively, were measured using attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy. As the particle size increases, the amount of adsorbed BSA decreases, but the loss in the helical structure of adsorbed BSA increases due to the stronger interaction forces between adsorbed BSA and the larger particles. On 39 or 68 nm hematite particles, refolding of adsorbed BSA can be induced by protein–protein interactions, when the protein surface coverage exceeds certain critical values. Two-dimensional correlation spectroscopy (2D-COS) analysis of time-dependent ATR-FTIR spectra indicate that the increase in the amount of adsorbed BSA occurs prior to the loss in the BSA helical structure in the initial stage of adsorption processes, whereas an opposite sequence of the changes to BSA conformation and surface coverage is observed during the subsequent refolding processes. Desorption experiments show that replacing the protein solution with water can quench the refolding, but not the unfolding, of adsorbed BSA. A kinetic model was proposed to quantitatively describe the interplay of adsorption kinetics and conformational change, as well as the effects of particle size and initial protein concentration on the rate constants of elementary steps in protein adsorption onto a mineral surface.