2020
Brun P, Thuiller W, Chauvier Y, Pellissier L, Wuest RO, Wang Z, Zimmermann NE.
Model complexity affects species distribution projections under climate change. Journal of BiogeographyJournal of BiogeographyJournal of Biogeography. 2020;47:130-142.
AbstractAim Statistical species distribution models (SDMs) are the most common tool to predict the impact of climate change on biodiversity. They can be tuned to fit relationships at various levels of complexity (defined here as parameterization complexity, number of predictors, and multicollinearity) that may co-determine whether projections to novel climatic conditions are useful or misleading. Here, we assessed how model complexity affects the performance of model extrapolations and influences projections of species ranges under future climate change. Location Europe. Taxon 34 European tree species. Methods We sampled three replicates of predictor sets for all combinations of 10 levels (n = 3-12) of environmental variables (climate, terrain, soil) and 10 levels of multicollinearity. We used these sets for each species to fit four SDM algorithms at three levels of parameterization complexity. The >100,000 resulting SDM fits were then evaluated under environmental block cross-validation and projected to environmental conditions for 2061-2080 considering four climate models and two emission scenarios. Finally, we investigated the relationships of model design with model performance and projected distributional changes. Results Model complexity affected both model performance and projections of species distributional change. Fits of intermediate parameterization complexity performed best, and more complex parameterizations were associated with higher projected loss of current ranges. Model performance peaked at 10-11 variables but increasing number of variables had no consistent effect on distributional change projections. Multicollinearity had a low impact on model performance but distinctly increased projected loss of current ranges. Main conclusions SDM-based climate change impact assessments should be based on ensembles of projections, varying SDM algorithms as well as parameterization complexity, besides emission scenarios and climate models. The number of predictor variables should be kept reasonably small and the classical threshold of maximum absolute Pearson correlation of 0.7 restricts collinearity-driven effects in projections of species ranges.
Li Y, Reich PB, Schmid B, Shrestha N, Feng X, Lyu T, Maitner BS, Xu X, Li Y, Zou D, et al. Leaf size of woody dicots predicts ecosystem primary productivity. Ecology LettersEcology LettersEcology Letters. 2020;23:1003-1013.
AbstractAbstract A key challenge in ecology is to understand the relationships between organismal traits and ecosystem processes. Here, with a novel dataset of leaf length and width for 10 480 woody dicots in China and 2374 in North America, we show that the variation in community mean leaf size is highly correlated with the variation in climate and ecosystem primary productivity, independent of plant life form. These relationships likely reflect how natural selection modifies leaf size across varying climates in conjunction with how climate influences canopy total leaf area. We find that the leaf size‒primary productivity functions based on the Chinese dataset can predict productivity in North America and vice-versa. In addition to advancing understanding of the relationship between a climate-driven trait and ecosystem functioning, our findings suggest that leaf size can also be a promising tool in palaeoecology for scaling from fossil leaves to palaeo-primary productivity of woody ecosystems.
Li Y, Zou D, Shrestha N, Xu X, Wang Q, Jia W, Wang Z.
Spatiotemporal variation in leaf size and shape in response to climate. Journal of Plant EcologyJournal of Plant Ecology. 2020;13:87-96.
AbstractMorphological variation of leaves is a key indicator of plant response to climatic change. Leaf size and shape are associated with carbon, water and energy exchange of plants with their environment. However, whether and how leaf size and shape responded to climate change over the past decades remains poorly studied. Moreover, many studies have only explored inter- but not intraspecific variation in leaf size and shape across space and time.We collected over 6000 herbarium specimens spanning 98 years (1910–2008) in China for seven representative dicot species and measured their leaf length and width. We explored geographical patterns and temporal trends in leaf size (i.e., leaf length, leaf width and length x width product) and shape (i.e., length/width ratio), and investigated the effects of changes in precipitation and temperature over time and space on the variation in leaf size and shape.After accounting for the effects of sampling time, leaf size decreased with latitude for all species combined, but the relationship varied among species. Leaf size and shape were positively correlated with temperature and precipitation across space. After accounting for the effects of sampling locations, leaf size of all species combined increased with time. Leaf size changes over time were mostly positively correlated with precipitation, whereas leaf shape changes were mostly correlated with temperature. Overall, our results indicate significant spatial and temporal intraspecific variation in leaf size and shape in response to climate. Our study also demonstrates that herbarium specimens collected over a considerable period of time provide a good resource to study the impacts of climate change on plant morphological traits.
Sandanov DV, Liu Y, Wang Z, Korolyuk YA.
Woody and Herbaceous Plants of Inner Asia: Species Richness and Ecogeorgraphic Patterns. Contemporary Problems of Ecology. 2020;13:360-369.
AbstractThe diversity of vascular plants in Inner Asia has been researched; the main environmental factors determining the distribution of species belonging to various life forms and having different distribution range sizes have been identified. The key factors determining species diversity in Inner Asia are past climate changes and precipitation parameters. By contrast, the temperature conditions of the current climate do not affect the species richness significantly. The following current climatic parameters are important for woody plants: precipitation seasonality, mean precipitation in winter and spring, and diurnal range of temperature. Quite the opposite, the species richness of herbaceous plants is determined by climate-change velocity from the mid-Holocene and Last Glacial Maximum, the spatial heterogeneity of precipitation, and mean summer temperatures. Over time, distribution ranges of rare plants in the studied region may be reduced due to the increasing aridization.
Su X, Shrestha N, Xu X, Sandanov D, Wang Q, Wang S, Dimitrov D, Wang Z.
Phylogenetic conservatism and biogeographic affinity influence woody plant species richness–climate relationships in eastern Eurasia. EcographyEcographyEcography. 2020;43:1027-1040.
AbstractMechanisms underlying species richness patterns remain a central yet controversial issue in biology. Climate has been regarded as a major determinant of species richness. However, the relative influences of different evolutionary processes, (i.e. niche conservatism, diversification rate and time for speciation) on species richness–climate relationships remain to be tested. Here, using newly compiled distribution maps for 11 422 woody plant species in eastern Eurasia, we estimated species richness patterns for all species and for families with tropical and temperate affinities separately, and explored the phylogenetic signals in species richness patterns of different families and their relationships with contemporary climate and climate change since the Last Glacial Maximum (LGM). We further compared the effects of niche conservatism (represented by contemporary-ancestral climatic niches differences), diversification rate and time for speciation (represented by family age) on variation in the slopes of species richness–climate relationships. We found that winter coldness was the best predictor for species richness patterns of most tropical families while Quaternary climate change was the best predictor for those of most temperate families. Species richness patterns of closely-related families were more similar than those of distantly-related families within eudicots, and significant phylogenetic signals characterized the slopes of species richness–climate relationships across all angiosperm families. Contemporary-ancestral climatic niche differences dominated variation in the relationships between family-level species richness and most climate variables. Our results indicate significant phylogenetic conservatism in family-level species richness patterns and their relationships with contemporary climate within eudicots. These findings shed light on the mechanisms underlying large-scale species richness patterns and suggest that ancestral climatic niche may influence the evolution of species richness–climate relationships in plants through niche conservatism.
Wang Y, Lyu T, Luo A, Li Y, Liu Y, Freckleton RP, Liu S, Wang Z.
Spatial Patterns and Drivers of Angiosperm Sexual Systems in China Differ Between Woody and Herbaceous Species. Frontiers in Plant Science. 2020;11:1222.
AbstractPlant sexual systems play an important role in the evolution of angiosperm diversity. However, large-scale patterns in the frequencies of sexual systems (i.e. dioecy, monoecy, and hermaphroditism) and their drivers for species with different growth forms remain poorly known. Here, using a newly compiled database on the sexual systems and distributions of 19780 angiosperm species in China, we map the large-scale geographical patterns in frequencies of the sexual systems of woody and herbaceous species separately. We use these data to test the following two hypotheses: (1) the prevalence of sexual systems differs between woody and herbaceous assemblies because woody plants have taller canopies and are found in warm and humid climates; (2) the relative contributions of different drivers (specifically climate, evolutionary age, and mature plant height) to these patterns differ between woody and herbaceous species. We show that geographical patterns in proportions of different sexual systems (especially dioecy) differ between woody and herbaceous species. Geographical variations in sexual systems of woody species were influenced by climate, evolutionary age and plant height. In contrast, these have only weakly significant effects on the patterns of sexual systems of herbaceous species. We suggest that differences between species with woody and herbaceous growth forms in terms of biogeographic patterns of sexual systems, and their drivers, may reflect their differences in physiological and ecological adaptions, as well as the coevolution of sexual system with vegetative traits in response to environmental changes.
Wang Y, Lyu T, Shrestha N, Lyu L, Li Y, Schmid B, Freckleton RP, Dimitrov D, Liu S, Hao Z, et al. Drivers of large-scale geographical variation in sexual systems of woody plants. Global Ecology and BiogeographyGlobal Ecology and Biogeography. 2020;29:546-557.
AbstractAbstract Aim Sexual systems strongly influence angiosperm evolution and play important roles in community assembly and species responses to climate change. However, geographical variation in proportions of different sexual systems (dioecy, monoecy and hermaphroditism) in response to changes in climate, life-history traits and evolutionary age remains poorly understood. Here, we map the geographical variation in proportions of different sexual systems and hypothesize that the prevalence of hermaphrodites increases with aridity owing to their advantages in colonizing harsh environments, whereas dioecy is most successful in humid regions with tall-canopy vegetation and old floras. Location China. Time period Current. Major taxa studied Woody angiosperms. Methods Using data on sexual systems and distributions of 10,449 woody species in China, we estimated the proportions of different sexual systems in local floras (50 km × 50 km grid cells). Spatial linear models, phylogenetic general linear models and structural equation models were used to compare the relative influences of climate, plant height and evolutionary age on geographical variation in proportions of different sexual systems. Results We found contrasting geographical patterns in the proportions of different sexual systems. The proportions of dioecy and monoecy increased with plant height and were highest in humid regions with older floras, whereas that of hermaphroditism decreased with plant height and was highest in arid regions with younger floras. Plant height was the strongest correlate of sexual system frequency. Climate influenced sexual system frequency both directly and indirectly via its effects on plant height. Main conclusions Our study provides the first continuous map of sexual system composition in woody floras over a large spatial scale. Our findings suggest that mature plant height, reflecting plant longevity, dominates geographical variation in sexual systems and that the proportions of different sexual systems in local floras might reflect their correlated evolution with traits in response to climate changes.
Zhang X, Dai G, Ma T, Liu N, Hu H, Ma W, Zhang J-B, Wang Z, Peterse F, Feng X.
Links between microbial biomass and necromass components in the top- and subsoils of temperate grasslands along an aridity gradient. Geoderma. 2020;379:114623.
AbstractMicrobial carbon has recently been highlighted to play a key role in the formation and persistence of soil organic carbon, bearing significant implications for regulating ecosystem carbon stocks under global changes. However, microbial carbon distribution and the link between biomass and necromass components are poorly understood in natural soils, especially at depth. Here, we employ various microbial biomarkers, including phospholipid fatty acids (PLFAs), amino sugars and glycerol dialkyl glycerol tetraethers (GDGTs), to investigate the spatial distribution patterns of microbial biomass and necromass components in the top- (0–10 cm) versus subsoils (30–50 cm) across Chinese temperate grasslands along an aridity gradient. We find that bacterial necromass components are better preserved relative to bacterial biomass in the sub- than topsoil, possibly due to a stronger association of microbial necromass with calcium and/or lower nitrogen competition between plants and microbes at depth in these neutral-to-alkaline soils. As a result, there is a stronger link between bacterial necromass components (especially for core lipid branched GDGTs and muramic acid) and their producers (reflected by intact polar lipid-derived branched GDGTs) in the sub- than topsoil, while such a trend is not observed for fungi- or archaea-derived components. Furthermore, using linear mixed effect model analyses, we find that aridity index best explains the concentration variance of most microbial biomarkers in the topsoil, whereas edaphic properties (i.e., pH and macronutrients) also contribute significantly to their variance in the subsoil. These findings highlight different links between microbial necromass and biomass components and distinct preservation mechanisms for microbial carbon at different soil depths, which is crucial for improved understanding of microbial carbon sequestration potentials at different depths in a changing environment.
熊星烁, 蔡宏宇, 李耀琪, 马文红, 牛克昌, 陈迪马, 刘娜娜, 苏香燕, 景鹤影, 冯晓娟, et al. 内蒙古典型草原植物叶片C、N、P化学计量特征的季节动态. 植物生态学报. 2020.