科研成果

2023
Liu Y, Heberling MJ, Wang Z, Soltis DE, Soltis PS. Niche unfilling dominates the naturalization of species from intercontinentally disjunct genera. Global Ecology and BiogeographyGlobal Ecology and Biogeography. 2023;32:1977-1990.Abstract
Abstract Aim Quantifying niche shifts of non-native species and their interactions with natives is vital in evaluating invasion risk yet remains difficult. Climate filtering and competition with native congeners are two important processes impacting niche changes and yielding contradictory predictions for the coexistence of non-native and native species. Closely related species representing the Eastern Asia (EA)?Eastern North America (ENA) floristic disjunction provide a powerful yet unexplored system for assessing the relative roles of these two processes. Here, we tested three niche change scenarios (unfilling, expansion and stable) using EA species naturalized in ENA. We aim to answer: (1) which scenario is observed for naturalized species? and (2) how has niche overlap between EA and ENA congeners changed after naturalization? Location ENA and EA. Time Period Present. Major Taxa Studied Angiosperms. Methods Niches were estimated using both occurrences and predictions generated by ecological niche models. Niche changes of naturalized species and their niche overlap with natives were measured using Schoener's D. Contributions of niche expansion and unfilling on niche changes of naturalized niches were evaluated using hierarchical partitioning and linear regressions. We further measured pairwise phylogenetic distances among EA and ENA congeners and evaluated the association with niche overlap. Results Unfilling-dominated postintroduction niche changes of the naturalized species. EA species naturalized in ENA exhibited lower niche overlap with ENA native congeners compared with native range populations in EA. These results remain when considering time since introduction and potential physical dispersal limitations interpreted by projecting suitable niche space between EA and ENA. However, dispersal limitation may contribute to the degree of niche unfilling. Main Conclusions Using intercontinental disjunct species as a study system, we found that naturalization is shaped jointly by climate filtering and competition with native congeners, providing valuable insights for evaluating invasion risk underlying global floristic exchanges.
Wang Y, Li Y, Luo A, Lyu T, Freckleton RP, Dimitrov D, Wang Z. Evolutionary history and climate co-determine the geographical variation in pollination modes of angiosperms in China. Global Ecology and BiogeographyGlobal Ecology and Biogeography. 2023;n/a.Abstract
Abstract Aim Pollination is an essential stage of angiosperm reproduction, and the mode of pollination plays a major role in driving evolutionary and ecological responses of plants to environmental changes. However, the effects of climate, evolutionary history and floral traits (i.e. plant sexual systems) on pollination mode variation remain unclear. Here, we explored the biogeographic patterns in pollination mode frequency and tested the hypothesis that insect pollination prevails in warm humid regions with old floras due to high pollinator dependence, whereas wind pollination is more frequent in arid regions with younger floras and is more strongly associated with dioecy. Location China. Time period Since the Last Glacial Maximum. Major taxa studied Angiosperms. Methods Using data on pollination modes and geographic ranges of 29,719 angiosperm species in China, we mapped the biogeographic pattern of pollination mode frequency. Phylogenetic logistic regressions and generalized linear mixed models were employed to evaluate the relative importance of climate, evolutionary history (represented by phylogenetic conservatism and grid-level mean genus age) and sexual systems on variations in pollination modes across species and space. Results Evolutionary history was the strongest correlate of pollination mode variation across species and space. The proportion of insect-pollinated species was higher in humid regions with old floras, but lower in arid regions with young floras. Evolutionary history and temperature dominated variations in pollination mode frequency in humid areas, while precipitation dominated in arid areas. Climate influenced geographic pattern in pollination mode frequency both directly and indirectly via its effects on species richness and plant sexual systems. Main Conclusions Our results showed that geographic pattern in angiosperm pollination mode frequency is dominated by evolutionary history followed by climate, which extended previous findings of climate-driven mechanisms. Our findings demonstrate the importance to incorporate evolutionary history in understanding the mechanisms underlying the functional biogeography of plant traits.
Peng S, Shrestha N, Luo Y, Li Y, Cai H, Qin H, Ma K, Wang Z. Incorporating global change reveals extinction risk beyond the current Red List. Current Biology. 2023;33:3669-3678.e4.Abstract
Summary Global changes over the past few decades have caused species distribution shifts and triggered population declines and local extinctions of many species. The International Union for Conservation of Nature (IUCN) Red List of Threatened Species (Red List) is regarded as the most comprehensive tool for assessing species extinction risk and has been used at regional, national, and global scales. However, most Red Lists rely on the past and current status of species populations and distributions but do not adequately reflect the risks induced by future global changes. Using distribution maps of >4,000 endemic woody species in China, combined with ensembled species distribution models, we assessed the species threat levels under future climate and land-cover changes using the projected changes in species’ suitable habitats and compared our updated Red List with China’s existing Red List. We discover an increased number of threatened species in the updated Red List and increased threat levels of >50% of the existing threatened species compared with the existing one. Over 50% of the newly identified threatened species are not adequately covered by protected areas. The Yunnan-Guizhou Plateau, rather than the Hengduan Mountains, is the distribution center of threatened species on the updated Red Lists, as opposed to the threatened species on the existing Red List. Our findings suggest that using Red Lists without considering the impacts of future global changes will underestimate the extinction risks and lead to a biased estimate of conservation priorities, potentially limiting the ability to meet the Kunming-Montreal global conservation targets.
Wang Y, Lyu T, Luo A, Dimitrov D, Wang Z. Geographic patterns in range sizes and their drivers of endemic angiosperms in China. Ecosphere. 2023;14:e4646.Abstract
Abstract Geographic range size of endemic species is the most important indicator of species' vulnerability to extinction and conservation prioritization, yet variation in range size among species and across space has been relatively understudied. We investigated the variations and geographic patterns of the range size of 9898 angiosperm species endemic to China and compared the effects of historical and contemporary climate and species' functional traits associated with dispersal ability (including growth form, fruit type, and sexual system) on range size variations. Our results revealed that narrow-ranged endemic species are clustered in Southwest China where angiosperm species' richness peaks. Winter temperature had the strongest and negative effect on the range size of narrow-ranged endemic species across space and species, while climate seasonality had the strongest and positive effect on the range size of wide-ranged endemic species. Both historical and contemporary climate have also influenced species range size indirectly via their effects on species' functional traits associated with dispersal ability. Range size of all endemic species, narrow-ranged and wide-ranged, showed little phylogenetic signal, suggesting that phylogenetic conservatism plays a minor role in range size variations. Our results show that the range size of angiosperm species endemic to China is driven by both extrinsic spatiotemporal environmental factors and intrinsic species' traits that allow species to cope with environmental change.
Chang Y, Gelwick K, Willett SD, Shen X, Albouy C, Luo A, Wang Z, Zimmermann NE, Pellissier L. Phytodiversity is associated with habitat heterogeneity from Eurasia to the Hengduan Mountains. New Phytologist. 2023;n/a.Abstract
Summary The geographic distribution of plant diversity matches the gradient of habitat heterogeneity from lowlands to mountain regions. However, little is known about how much this relationship is conserved across scales. Using the World Checklist of Vascular Plants and high-resolution biodiversity maps developed by species distribution models, we investigated the associations between species richness and habitat heterogeneity at the scales of Eurasia and the Hengduan Mountains (HDM) in China. Habitat heterogeneity explains seed plant species richness across Eurasia, but the plant species richness of 41/97 HDM families is even higher than expected from fitted statistical relationships. A habitat heterogeneity index combining growing degree days, site water balance, and bedrock type performs better than heterogeneity based on single variables in explaining species richness. In the HDM, the association between heterogeneity and species richness is stronger at larger scales. Our findings suggest that high environmental heterogeneity provides suitable conditions for the diversification of lineages in the HDM. Nevertheless, habitat heterogeneity alone cannot fully explain the distribution of species richness in the HDM, especially in the western HDM, and complementary mechanisms, such as the complex geological history of the region, may have contributed to shaping this exceptional biodiversity hotspot.
Jing H, Xiong X, Jiang F, Pu X, Ma W, Li D, Liu Z, Wang Z. Climate change filtered out resource-acquisitive plants in a temperate grassland in Inner Mongolia, China. Science China Life Sciences. 2023.Abstract
Global climate change has led to the decline of species and functional diversity in ecosystems, changing community composition and ecosystem functions. However, we still know little about how species with different resource-use strategies (different types of resource usage and plant growth of plants as indicated by the spectrum of plant economic traits, including acquisitive resource-use strategy and conservative resource-use strategy) would change in response to climate change, and how the changes in the diversity of species with different resource-use strategies may influence community-level productivity. Here, using long-term (1982–2017) observatory data in a temperate grassland in Inner Mongolia, we investigated how climate change had affected the species richness (SR) and functional richness (FRic) for the whole community and for species with different resource-use strategies. Specifically, based on data for four traits representing leaf economics spectrum (leaf carbon concentration, leaf nitrogen concentration, leaf phosphorus concentration, and specific leaf area), we divided 81 plant species appearing in the grassland community into three plant functional types representing resource-acquisitive, medium, and resource-conservative species. We then analyzed the changes in community-level productivity in response to the decline of SR and FRic at the community level and for different resource-use strategies. We found that community-level SR and FRic decreased with drying climate, which was largely driven by the decline of diversity for resource-acquisitive species. However, community-level productivity remained stable because resource-conservative species dominating this grassland were barely affected by climate change. Our study revealed distinctive responses of species with different resource-use strategies to climate change and provided a new approach based on species functional traits for predicting the magnitude and direction of climate change effects on ecosystem functions.
Zu K, Chen F, Li Y, Shrestha N, Fang X, Ahmad S, Nabi G, Wang Z. Climate change impacts flowering phenology in Gongga Mountains, Southwest China. Plant Diversity. 2023.Abstract
Flowering phenology of plants, which is important for reproductive growth, has been shown to be influenced by climate change. Understanding how flowering phenology responds to climate change and exploring the variation of this response across plant groups can help predict structural and functional changes in plant communities in response to ongoing climate change. Here, we used long-term collections of 33 flowering plant species from the Gongga Mountains (Mt. Gongga hereafter), a biodiversity hotspot, to investigate how plant flowering phenology changed over the past 70 years in response to climate change. We found that mean flowering times in Mt. Gongga were delayed in all vegetation types and elevations over the last 70 years. Furthermore, flowering time was delayed more in lowlands than at high elevations. Interestingly, we observed that spring-flowering plants show earlier flowering times whereas summer/autumn plants show delayed flowering times. Non-synchronous flowering phenology across species was mainly driven by changes in temperature and precipitation. We also found that the flowering phenology of 78.8% plant species was delayed in response to warming temperatures. Our findings also indicate that the magnitude and direction of variation in plant flowering times vary significantly among species along elevation gradients. Shifts in flowering time might cause trophic mismatches with co-occurring and related species, affecting both forest ecosystem structure and function.
Meng J, Li Y, Feng Y, Hua F, Shen X, Li S, Shrestha N, Peng S, Rahbek C, Wang Z. Anthropogenic vulnerability assessment of global terrestrial protected areas with a new framework. Biological ConservationBiological Conservation. 2023;283:110064.Abstract
Protected areas (PAs) are the major conservation tool for ecosystem conservation, but function unequally in mitigating human pressures in practice. Assessing PA vulnerability caused by human pressures and its association with socioeconomic and PA characteristic factors is vital for improving conservation effectiveness and the post-2020 PA expansion. Here, using a new framework integrating the intensity and temporal changes of human pressures in PAs and their matched unprotected areas, we categorize global terrestrial PAs into four anthropogenic vulnerability levels: high (11.7 %), moderate (18.6 %) and low (21.9 %) vulnerability and wilderness (47.8 %). We find significant variations in the anthropogenic vulnerability of PAs between countries, continents, and IUCN categories. Europe has the highest proportion of high-vulnerability PAs (ca. 19.7 % of protected areas in Europe), while South America and Oceania have the highest proportions of low-vulnerability PAs and wilderness PAs, respectively (33.2 % and 75.0 % respectively). The vulnerability of PAs is not significantly associated with socioeconomic factors at the country level, which might reflect the trade-offs between positive and negative outcomes of development. With a new framework that integrated four significant factors for anthropogenic vulnerability assessment, this study demonstrates that global PAs have different anthropogenic vulnerability levels and suggest that some PAs function effectively in mitigating human pressures despite currently intense human pressures within them. Our results also suggest that future evaluations on the conservation status should pay attention not only to PA coverage but also to the anthropogenic vulnerability levels within PAs to achieve higher conservation effectiveness.
Jiang K, Wang Q, Dimitrov D, Luo A, Xu X, Su X, Liu Y, Li Y, Li Y, Wang Z. Evolutionary history and global angiosperm species richness–climate relationships. Global Ecology and BiogeographyGlobal Ecology and Biogeography. 2023;32:1059-1072.Abstract
Abstract Aim Climate has been regarded as an important explanation for large-scale species richness patterns. However, the mechanisms underlying the significant variations in species richness?climate relationships across different clades remain to be tested. We explored how niche conservatism, diversification rates and time for speciation influenced species richness?climate relationships between clades. Location The globe. Time Period Present day. Major Taxa Studied Angiosperms. Methods Based on a newly complied database of the global distributions of 288,735 angiosperm species, we used generalized linear models to assess the relationships between species richness of different angiosperm families and climatic factors. We also conducted phylogenetic comparative analysis to test whether niche conservatism, diversification rates and time for speciation affect the variations in species richness?climate relationships. Results We found that temperature seasonality dominated the global angiosperm diversity patterns. Closely related families had more similar species richness?climate relationships than distantly related ones. The discrepancy between the current and ancestral niches of different clades had much stronger effects on variations in species richness?climate relationships than diversification rates and time for speciation. With the increase in the discrepancy between current and ancestral niches, the explanatory power (i.e., R2) of contemporary temperature and precipitation in explaining species richness patterns increased. Main Conclusions Overall, our findings strongly support that niche conservatism dominates the variations in species richness?climate relationships across taxonomic groups. These findings allow better understanding on how large-scale species diversity patterns are formed.
Liu Y, Xu X, Dimitrov D, Pellissier L, Borregaard MK, Shrestha N, Su X, Luo A, Zimmermann NE, Rahbek C, et al. An updated floristic map of the world. Nature Communications. 2023;14:2990.Abstract
Floristic regions reflect the geographic organization of floras and provide essential tools for biological studies. Previous global floristic regions are generally based on floristic endemism, lacking a phylogenetic consideration that captures floristic evolution. Moreover, the contribution of tectonic dynamics and historical and current climate to the division of floristic regions remains unknown. Here, by integrating global distributions and a phylogeny of 12,664 angiosperm genera, we update global floristic regions and explore their temporal changes. Eight floristic realms and 16 nested sub-realms are identified. The previously-defined Holarctic, Neotropical and Australian realms are recognized, but Paleotropical, Antarctic and Cape realms are not. Most realms have formed since Paleogene. Geographic isolation induced by plate tectonics dominates the formation of floristic realms, while current/historical climate has little contribution. Our study demonstrates the necessity of integrating distributions and phylogenies in regionalizing floristic realms and the interplay of macroevolutionary and paleogeographic processes in shaping regional floras.
Liu N, Hu H, Ma W, Deng Y, Dimitrov D, Wang Q, Shrestha N, Su X, Feng K, Liu Y, et al. Relationships Between Soil Microbial Diversities Across an Aridity Gradient in Temperate Grasslands. Microbial Ecology. 2023;85:1013-1027.Abstract
Soil microbes assemble in highly complex and diverse microbial communities, and microbial diversity patterns and their drivers have been studied extensively. However, diversity correlations and co-occurrence patterns between bacterial, fungal, and archaeal domains and between microbial functional groups in arid regions remain poorly understood. Here we assessed the relationships between the diversity and abundance of bacteria, fungi, and archaea and explored how environmental factors influence these relationships. We sampled soil along a 1500-km-long aridity gradient in temperate grasslands of Inner Mongolia (China) and sequenced the 16S rRNA gene of bacteria and archaea and the ITS2 gene of fungi. The diversity correlations and co-occurrence patterns between bacterial, fungal, and archaeal domains and between different microbial functional groups were evaluated using α-diversity and co-occurrence networks based on microbial abundance. Our results indicate insignificant correlations among the diversity patterns of bacterial, fungal, and archaeal domains using α-diversity but mostly positive correlations among diversity patterns of microbial functional groups based on α-diversity and co-occurrence networks along the aridity gradient. These results suggest that studying microbial diversity patterns from the perspective of functional groups and co-occurrence networks can provide additional insights on patterns that cannot be accessed using only overall microbial α-diversity. Increase in aridity weakens the diversity correlations between bacteria and fungi and between bacterial and archaeal functional groups, but strengthens the positive diversity correlations between bacterial functional groups and between fungal functional groups and the negative diversity correlations between bacterial and fungal functional groups. These variations of the diversity correlations are associated with the different responses of microbes to environmental factors, especially aridity. Our findings demonstrate the complex responses of microbial community structure to environmental conditions (especially aridity) and suggest that understanding diversity correlations and co-occurrence patterns between soil microbial groups is essential for predicting changes in microbial communities under future climate change in arid regions.
Chen G, Cai Q, Ma S, Feng Y, Fang W, Ji C, Zhu J, Wang Z, Wang S, Tang Z, et al. Climate and forest attributes influence above-ground biomass of deciduous broadleaf forests in China. Journal of EcologyJournal of Ecology. 2023;111:495-508.Abstract
Abstract Forests provide a huge carbon pool, a substantial portion of which is stored in above-ground biomass (AGB). Deciduous broadleaf forests in China are an essential component of global deciduous broadleaf forests, yet the impacts of climate and forest attributes on their AGB are not well understood. Using a comprehensive forest inventory database from 772 plots distributed across temperate and subtropical deciduous broadleaf forests in China (23.51°?42.53°N and 104.24°?128.27°E), we applied variance partitioning analysis, model selection analysis and structural equation models to explore how climate and forest attributes (species diversity, community-level functional traits and stand structures) affect AGB in different climatic forests (semi-arid forests, semi-humid forests and humid forests). Community-level functional traits and stand structures together explained a great portion of the variance in AGB. The effect of community-level functional traits was greater than that of stand structures in semi-arid forests and semi-humid forests, but smaller in humid forests. Further analyses showed that community-level maximum tree height, stem density and tree size inequality were important explanatory variables. Although climate and species diversity had minor effects, the direct positive effect of mean annual precipitation (MAP) was still important, especially in semi-arid forests. Synthesis. Community-level functional traits but not species diversity were key drivers of AGB, indicating that tree species diversity loss may not impair AGB substantially in deciduous broadleaf forests in China. Moreover, stand structures also had strong effects on AGB in both semi-arid forests and humid forests, highlighting the importance of structural complexity. In addition, MAP had a direct positive effect on AGB in semi-arid forests and semi-humid forests, and a future increase in drought might potentially reduce carbon storage in these forests.
宋文起, 王志恒. 近30年来中国气温、降水和水分盈亏的趋势及其变化. 气候与环境研究. 2023;28:1-16.PKU 
Wang Y, Luo A, Lyu T, Dimitrov D, Liu Y, Li Y, Xu X, Freckleton RP, Hao Z, Wang Z. Global distribution and evolutionary transitions of floral symmetry in angiosperms. Science Advances. 2023;9:eadg2555.Abstract
Floral symmetry plays an important role in plant-pollinator interactions and may have remarkable impacts on angiosperm diversification. However, spatiotemporal patterns in floral symmetry and drivers of these patterns remain unknown. Here, using newly compiled floral symmetry (actinomorphy versus zygomorphy) data of 279,877 angiosperm species and their distributions and phylogenies, we estimated global geographic patterns and macroevolutionary dynamics of floral symmetry. We found that frequency of actinomorphic species increased with latitude, while that of zygomorphic species decreased. Solar radiation, present-day temperature, and Quaternary temperature change correlated with geographic variation in floral symmetry frequency. Evolutionary transitions from actinomorphy to zygomorphy dominated floral symmetry evolution, although the transition rate decreased with decreasing paleotemperature throughout the Cenozoic. Notably, we found that zygomorphy may not favor diversification of angiosperms as previously observed in some clades. Our study demonstrates the influence of (paleo)climate on spatiotemporal patterns in floral symmetry and challenges previous views about role of flower symmetry in angiosperm diversification. (Paleo)climate profoundly influenced spatiotemporal patterns of angiosperm floral symmetry.
Zu K, Lenoir J, Fang J, Tang Z, Shen Z, Ji C, Zheng C, Luo A, Song W, Zimmermann NE, et al. Elevational shift in seed plant distributions in China's mountains over the last 70 years. Global Ecology and BiogeographyGlobal Ecology and Biogeography. 2023;32:1098-1112.Abstract
Abstract Aim Significant changes in species elevational ranges in mountains have been repeatedly documented, yet the direction, magnitude and drivers of these shifts remain controversial. Presently, there is still lacking evidence about the general nature of species elevational range shifts in eastern Eurasia in response to anthropogenic climate change. By using historical specimen records and recent field observations for 735 seed plant species across 29 China's mountains, we assessed changes in species' elevational centroids and their drivers. Location China. Time Period 1950–2018. Major Taxa Studied Seed plant species. Methods The elevation records of all sampled occurrences in each mountain during the two time periods were estimated, and the null models were developed to test the sampling bias. Ecological niche models (ENMs) were used to evaluate the relative importance of climate factors in constraining each species distribution. Generalized linear models (GLMs) to test the relationships between the centroid elevational range shifts of species and different divers. Results We found that 54% of the species shifting upward and 46% downhill. However, species' elevational shifts significantly differed among species and mountains. Herbaceous and lowland species moved upward faster than woody and high-elevation species. Species in temperate mountains and in mountains with taller elevational gradients moved upward, while species in subtropical mountains and in mountains with shorter elevational gradients moved downward. Precipitation changes experienced by species, species' climatic adaptations, several species' functional traits and mountain size all contributed to explain the magnitude of species' centroid elevational range shifts. Main Conclusions Our results highlight complex biodiversity redistribution of seed plants across Chinese mountains, not necessarily conforming to the trend of species upward shifts in elevation. Changes in precipitation regimes may blur the simplistic assumption of isotherm tracking. This study fills an important geographic shortfall for our understanding of biodiversity redistribution under anthropogenic climate change.
Sandanov DV, Kholina AB, Kozyrenko MM, Artyukova EV, Wang Z. Genetic Diversity of Oxytropis Species from the Center of the Genus Origin: Insight from Molecular Studies. Diversity. 2023;15:244.
李耀琪, 王志恒. 植物功能生物地理学的研究进展与展望. 植物生态学报. 2023;47:145-169.PKU 
Jia J, Liu Z, Haghipour N, Wacker L, Zhang H, Sierra CA, Ma T, Wang Y, Chen L, Luo A, et al. Molecular 14C evidence for contrasting turnover and temperature sensitivity of soil organic matter components. Ecology LettersEcology Letters. 2023;26:778-788.Abstract
Abstract Climate projection requires an accurate understanding for soil organic carbon (SOC) decomposition and its response to warming. An emergent view considers that environmental constraints rather than chemical structure alone control SOC turnover and its temperature sensitivity (i.e., Q10), but direct long-term evidence is lacking. Here, using compound-specific radiocarbon analysis of soil profiles along a 3300-km grassland transect, we provide direct evidence for the rapid turnover of lignin-derived phenols compared with slower-cycling molecular components of SOC (i.e., long-chain lipids and black carbon). Furthermore, in contrast to the slow-cycling components whose turnover is strongly modulated by mineral association and exhibits low Q10, lignin turnover is mainly regulated by temperature and has a high Q10. Such contrasts resemble those between fast-cycling (i.e., light) and mineral-associated slow-cycling fractions from globally distributed soils. Collectively, our results suggest that warming may greatly accelerate the decomposition of lignin, especially in soils with relatively weak mineral associations.
Luo A, Xu X, Liu Y, Li Y, Su X, Li Y, Lyu T, Dimitrov D, Larjavaara M, Peng S, et al. Spatio-temporal patterns in the woodiness of flowering plants. GlobalEcology and BiogeographyGlobal Ecology and Biogeography. 2023;32:384-396.Abstract
Abstract Aim Woody and herbaceous habits represent one of the most distinct contrasts among angiosperms, and the proportion of woody species in floras (i.e., “woodiness” hereafter) represents a fundamental structural element of plant diversity. Despite its core influence on ecosystem processes, spatio-temporal patterns in woodiness remain poorly understood. Here, we aim to demonstrate the global spatio-temporal patterns in angiosperm woodiness and their relationship with environmental factors. Location Global. Time period Cenozoic, 66 Ma to present. Major taxa studied Angiosperms. Methods Using newly compiled data on the growth forms and distributions of c. 300,000 angiosperm species and an angiosperm phylogeny, we mapped the current global geographical patterns in angiosperm woodiness, reconstructed ancestral states of growth forms through the angiosperm phylogeny and demonstrated the Cenozoic evolutionary dynamics of woodiness. We evaluated the relationships between woodiness and current climate and palaeoclimate. Results We found that c. 42.7% of angiosperms are woody. Woodiness decreased spatially from the equator towards high latitudes, temporally since the early Cenozoic. Temperature was the best predictor of the spatio-temporal decline in woodiness and was positively correlated with woodiness. Despite the temporal decline in woodiness, macroevolutionary herbaceous-to-woody transitions increased through time and contributed to the evolution of woody floras in temperate drylands, whereas the opposite transitions decreased through time and contributed to herbaceous floras in tropical and subtropical drylands. Main conclusions Our study improves understanding of the spatio-temporal dynamics of angiosperm woodiness. Our findings suggest that temperature is likely to be a determinant of spatio-temporal variations in woodiness, highlighting the role of temperature in maintaining the growth form composition of ecosystems. Our study also calls for attention to growth form transitions (e.g., secondary woodiness) in temperate drylands that have been neglected before.
2022
Wang Y, Liu X, Zhang X, Dai G, Wang Z, Feng X. Evaluating wetland soil carbon stability related to iron transformation during redox oscillations. Geoderma. 2022;428:116222.Abstract
Redox shifts threaten to reduce the massive soil organic carbon (SOC) stocks in wetlands. However, ferrous iron [Fe(II)] oxidation may stabilize wetland SOC by reducing phenol oxidative activity, inhibiting CO2 emissions, and promoting SOC association with ferric Fe [Fe(III)] (oxyhydr)oxides. Yet the prevalence and efficacy of this mechanism are not clear. Here we select six contrasting soils from fens and bogs with different pH for microcosm incubation under cyclic redox conditions, with or without Fe(II) addition, and compared to static oxic incubation. CO2 emissions, microbial composition, enzyme activities, Fe species, and organic matter properties were measured to test the related mechanism. We found that compared to static oxic conditions, the response of Fe(II) to cyclic redox conditions (indicated by the response ratio of −0.48 to 0.53) was positively correlated with that of phenol oxidative activity and cumulative CO2 at the end of the incubation. Redox cycling had little effect on Fe-bound SOC (assessed by the modified citrate-bicarbonate-dithionite extraction), although Fe(II) addition increased Fe-bound SOC in all soils under cyclic redox owing to the production of short-range-ordered Fe(III) (oxyhydr)oxides (quantified by oxalate extraction). Furthermore, Fe(II) addition decreased CO2 emissions from three soils with pH > 6 but increased CO2 emissions from the Sphagnum-dominated soil, which had elevated Fe(II) levels after the incubation. These findings highlight the SOC stabilization potential of Fe(II) addition to wetland soils experiencing redox oscillations by promoting the accumulation of Fe-bound SOC as well as decreasing CO2 emissions (in response to phenol oxidative activity), especially in non-Sphagnum-dominated freshwater wetlands with relatively high pH.

Pages