科研成果 by Type: 期刊论文

2008
李永科, 王志恒, 方精云. 中域效应模型中物种分布幅度梯度的影响. 中国科学(C辑:生命科学). 2008;38:583-589.Abstract
中域效应(Mid-domaineffect)模型量化了几何限制对物种丰富度空间分布格局的影响.然而,目前的研究缺乏对该模型的生物学意义作进一步的阐明,以及对物种分布幅度的梯度变化进行数量评价.本文利用已发表的马达加斯加蝴蝶的多样性数据,通过模拟方法和物种幅度频度分布(RSFD)的分析,研究了几何限制和物种幅度非随机分布的共同效应.研究发现,尽管马达加斯加蝴蝶物种丰富度的分布格局满足中域效应模型,但并不符合该模型的特征RSFD变化.如果在模型中加入物种分布幅度的梯度变化,则能较好地模拟实际RSFD的变化,表明物种丰富度的空间格局确实存在物种分布幅度的梯度变化.同时还发现,物种分布幅度梯度的存在对最终丰富度格局影响不大,表明中域效应模型的生物学意义难以从物种分布幅度的行为上来解释.
2007
Wang Z, Tang Z, Fang J. Altitudinal patterns of seed plant richness in the Gaoligong Mountains, south-east Tibet, China. Diversity and DistributionsDiversity and DistributionsDiversity and Distributions. 2007;13:845-854.
2006
He J-S, Wang Z, Wang X, Schmid B, Zuo W, Zhou M, Zheng C, Wang M, Fang J. A test of the generality of leaf trait relationships on the Tibetan Plateau. New Phytologist. 2006;170:835-848.
Tang Z, Wang Z, Zheng C, Fang J. Biodiversity in China's mountains. Frontiers in Ecology and the EnvironmentFrontiers in Ecology and the Environment. 2006;4:347-352.
胡会峰, 王志恒, 刘国华, 傅伯杰. 中国主要灌丛植被碳储量. 植物生态学报. 2006;30:539-544.Abstract
在广泛收集资料的基础上,利用植被平均碳密度方法,估算了我国6种主要灌丛植被的碳储量,并分析了其区域分布特征.主要结果如下:1)6种灌丛植被总面积为15 462.64×104hm2,总碳储量为1.68±0.12PgC(1Pg=1015g),灌丛植被平均碳密度为10.88±0.77 Mg C·hm-2(1 Mg=106g),不同植被类型差异较大,在5.92~17Mg C·hm-2之间波动.2)从区域分布来看,西南3省(云南、贵州、四川)既是我国灌丛主要的分布地区之一,分布面积占6种灌丛总面积的23.5%,又是我国灌丛碳储量的主要储库,碳储量占整个6种灌丛碳储量的1/3(32.6%),适宜的水热条件决定了该地区的植被平均碳密度要高于全国平均水平.3)与我国森林和草地的植被碳储量相比,这些灌丛碳储量相当于我国森林和草地碳储量的27%~40%和36%~55%.
马文红, 韩梅, 林鑫, 任艳林, 王志恒, 方精云. 内蒙古温带草地植被的碳储量. 干旱区资源与环境. 2006;20:192-195.Abstract
草地生态系统在全球碳循环中起着极为重要的作用。大部分草地碳储存在地下,但是实测数据十分匮乏,因此准确估算温带草地植被碳储量对评价草地生态系统碳循环具有重要意义。作为一个区域性资料积累工作,作者对内蒙古温带草地的碳储量进行了大范围的实测研究,以估算该地区草地植被的碳储量。主要结果如下:(1)内蒙古温带草地总面积为58.46×106hm2,总植被碳储量为226.0±13.27Tg C(1 Tg=1012g),平均碳密度为3.44Mg C.hm-2;(2)地下根系储存的碳是地上碳储量的6倍左右,地上、地下生物量碳储量分别为33.22±1.75和193.88±12.6 Tg C,平均碳密度分别是0.51和2.96 MgC.hm-2;(3)不同草地类型的碳储量差异较大,典型草原最大(113.25 Tg C),占草地总碳储量的50%,其次是草甸和草甸草原,荒漠草原碳储量最低(15.37 Tg C)。
Fang J, Wang Z, Zhao S, Li Y, Tang Z, Yu D, Ni L, Liu H, Xie P, Da L, et al. Biodiversity changes in the lakes of the Central Yangtze. Frontiers in Ecology and the EnvironmentFrontiers in Ecology and the Environment. 2006;4:369-377.
He J-S, Fang J, Wang Z, Guo D, Flynn DFB, Geng Z. Stoichiometry and large-scale patterns of leaf carbon and nitrogen in the grassland biomes of China. OecologiaOecologia. 2006;149:115-122.
2005
Fang J, Oikawa T, Kato T, Mo W, Wang Z. Biomass carbon accumulation by Japan's forests from 1947 to 1995. Global Biogeochemical CyclesGlobal Biogeochemical Cycles. 2005;19:GB2004.Abstract
Forest ecosystems in the Northern Hemisphere function as carbon (C) sinks for atmospheric carbon dioxide; however, the magnitude, location, and cause of the sinks remain uncertain. A number of field measurements of forest biomass and systematic national forest inventories in Japan make it possible to quantify the C sinks and their distribution. Allometric relationships between forest biomass and stem volume were obtained for the major forest types in Japan from 945 sets of direct field measurements across the country. These relationships were used to estimate the changes in C accumulations of aboveground biomass and total living biomass from 1947 to 1995 from the national forest inventories of 1947, 1956, 1961, 1965, 1975, 1980, 1985, 1990, and 1995. The results showed that the C accumulations have significantly increased during the last 50 years. The C density (C stock per hectare) and total C stock of aboveground biomass increased from 27.6 Mg C/ha and 611.7 Tg C in 1947 to 43.2 Mg C/ha and 1027.7 Tg C in 1995, respectively, and those of total living biomass increased from 33.9 Mg C/ha and 751.8 Tg C in 1947 to 53.6 Mg C/ha and 1274.8 Tg C in 1995. These increases were remarkable during 1976–1995, with a net increase of 5.6 Mg C/ha and 369 Tg C for the C density and total living biomass. These results suggest that Japan's forest vegetation is a significant C sink. In the past 20 years, living vegetation has sequestered 18.5 Tg C annually, 14.6 Tg C of which was accumulated in aboveground biomass. The total C sink for the whole forest sector (including nonliving biomass) of Japan was estimated as 36 Tg C/yr if using the net change ratio of nonliving biomass C to living biomass C derived from the United States and Europe. On the basis of average C sink per hectare, Japan's forests have a higher sequestration rate (0.77 Mg C ha−1 yr−1) than the average of the other northern countries (0.14–0.19 Mg C ha−1 yr−1). The expansion and regrowth of planted forests are two major causes for this increased C uptake; planted forests contribute ∼80% of the total C sink in Japan. The suitable oceanic climate for fast forest growth and effective forest management practice may be the principal factors for such a large sink.
2004
方精云, 沈泽昊, 唐志尧, 王志恒. "中国山地植物物种多样性调查计划"及若干技术规范. 生物多样性. 2004;12:5-9.
杨元合, 饶胜, 胡会峰, 陈安平, 吉成均, 朱彪, 左闻韵, 李轩然, 沈海花, 王志恒, et al. 青藏高原高寒草地植物物种丰富度及其与环境因子和生物量的关系. 生物多样性. 2004;12:200-205.
王志恒, 陈安平, 方精云. 湖南省种子植物物种丰富度与地形的关系. 地理学报. 2004;59:889-894.
王志恒, 陈安平, 朴世龙, 方精云. 高黎贡山种子植物物种丰富度沿海拔梯度的变化. 生物多样性. 2004;12:82-88.
王襄平, 王志恒, 方精云. 中国的主要山脉和山峰. 生物多样性. 2004;12:206-212.
Wang X, Wang Z, Fang J. Mountain ranges and peak in China. Biodiversity ScienceBiodiversity Science. 2004;12:206-212.
吴晓莆, 王志恒, 崔海亭, 方精云. 北京山区栎林的群落结构与物种组成. 生物多样性. 2004;12:155-163.

Pages