Quantifying bimolecular reaction kinetics of isoprene hydroxy peroxy radical: From dry to highly humid atmospheric environment

摘要:

Isoprene hydroxy peroxy radicals (ISOPOO), derived from isoprene oxidation by hydroxy radicals (OH), are key intermediates for ozone and secondary organic aerosol (SOA) formation in the atmosphere. Although ISOPOO-water complexes are ubiquitous, their impacts on ISOPOO chemistry remain obscure. Here the previously overlooked water effect on the bimolecular reaction kinetics of ISOPOO was investigated in an oxidative flow reactor. The major first-generation products of ISOPOO, isoprene hydroxy hydroperoxides (ISOPOOH), methacrolein (MACR), and methyl vinyl ketone (MVK), were measured simultaneously at various relative humidity (RH) with the help of a cold trap to avoid potential losses in direct gas sampling. We found that ISOPOO reactions were accelerated significantly under wet conditions, with a greater enhancement on 1,2-ISOPOO than 4,3-ISOPOO. 1,2-ISOPOOH yield appeared faster growth with RH than 4,3-ISOPOOH. MVK yield showed an upward-downward trend with RH, while MACR yield plateaued from 30% RH. To explain the enhancement in the ISOPOOH yield from 3% to 80% RH, the overall rate constants of 1,2-ISOPOO + HO2 and 4,3-ISOPOO + HO2 reactions at 80% RH should be 13 times and twice those at 3% RH, respectively. The empirical formulas were proposed for the first time to parameterize the water effect on ISOPOO + HO2 reactions. The updated kinetics of ISOPOO reactions were incorporated in a box model to simulate the RH-dependent ISOPOOH and C4 carbonyl yields under typical atmospheric conditions. High RH can enhance the ISOPOOH yield in urban, rural, and forest areas, and promote SOA formation correspondingly. Our findings shed light on the critical role of humidity in the reactions of ISOPOO and benefit evaluating the fate of isoprene and its impacts on air quality more accurately in the ambient atmosphere.

访问链接