Chen Y, Luo B, Xie S-dong.
Characteristics of the long-range transport dust events in Chengdu, Southwest China. Atmospheric Environment [Internet]. 2015;122:713–722.
访问链接AbstractChengdu is an inland
megacity in the Sichuan Basin, where dust influence remained an open question. During a one-year haze campaign, two dust events were identified in March 2013, indicating that desert dust can be transported to Chengdu and impacted local air quality strongly. The suggested low SO2/PM10, NO2/PM10 and PM2.5/PM10 ratios of 0.15, 0.27 and 0.40 could be used as immediate indicators for dust days. On typical dust day of March 12, PM10 was as high as 359.1 μg m−3, and crustal matter contributed 80.5% to total PM2.5 mass (106.6 μg m−3). Enrichment factors of most elements have decreased due to the dilution effect except for Ca and Mg. The dust was mainly from western and northern dust regions in China, including the “Northerly Mongolia Path”, “Western Desert Path” and “Northwestern Desert Path”. Due to the obstruction of Qinghai-Tibet Plateau on the west, the dust air to Chengdu was mostly from the northeastward direction after passing over Qinling Mountain. Moreover, the air experienced obvious elevation from its source regions driven by the
cold front synoptic pattern. The
spatial distribution of high AOD (Aerosol Optical Depth) values over 1.2 but low Ångström exponent of 0.5–0.6 around Chengdu verified the coarse pollution patterns. However, the dust pollution was not serious in nearby Chongqing and Guizhou and exhibited weak regional feature, a result different from those in Beijing and Shanghai.
Li J, Xie SD, Zeng LM, Li LY, Li YQ, Wu RR.
Characterization of ambient volatile organic compounds and their sources in Beijing, before, during, and after Asia-Pacific Economic Cooperation China 2014. Atmospheric Chemistry and Physics [Internet]. 2015;15:7945–7959.
访问链接AbstractAmbient volatile organic compounds (VOCs) were measured using an online system, gas chromatography–mass spectrometry/flame ionization detector (GC-MS/FID), in Beijing, China, before, during, and after Asia-Pacific Economic Cooperation (APEC) China 2014, when stringent air quality control measures were implemented. Positive matrix factorization (PMF) was applied to identify the major VOC contributing sources and their temporal variations. The secondary organic aerosols potential (SOAP) approach was used to estimate variations of precursor source contributions to SOA formation. The average VOC mixing ratios during the three periods were 86.17, 48.28, and 72.97 ppbv, respectively. The mixing ratios of total VOC during the control period were reduced by 44 %, and the mixing ratios of acetonitrile, halocarbons, oxygenated VOCs (OVOCs), aromatics, acetylene, alkanes, and alkenes decreased by approximately 65, 62, 54, 53, 37, 36, and 23 %, respectively. The mixing ratios of all measured VOC species decreased during control, and the most affected species were chlorinated VOCs (chloroethane, 1,1-dichloroethylene, chlorobenzene). PMF analysis indicated eight major sources of ambient VOCs, and emissions from target control sources were clearly reduced during the control period. Compared with the values before control, contributions of vehicular exhaust were most reduced, followed by industrial manufacturing and solvent utilization. Reductions of these three sources were responsible for 50, 26, and 16 % of the reductions in ambient VOCs. Contributions of evaporated or liquid gasoline and industrial chemical feedstock were slightly reduced, and contributions of secondary and long-lived species were relatively stable. Due to central heating, emissions from fuel combustion kept on increasing during the whole campaign; because of weak control of liquid petroleum gas (LPG), the highest emissions of LPG occurred in the control period. Vehicle-related sources were the most important precursor sources likely responsible for the reduction in SOA formation during this campaign.
Li L, Xie S, Zeng L, Wu R, Li J.
Characteristics of volatile organic compounds and their role in ground-level ozone formation in the Beijing-Tianjin-Hebei region, China. Atmospheric Environment [Internet]. 2015;113:247–254.
访问链接AbstractTo better understand the chemical speciation of volatile organic compounds (VOCs) and their role in ground-level ozone formation in the Beijing-Tianjin-Hebei region, China, measurements of 56 non-methane hydrocarbons (NMHCs) and 12 carbonyls were conducted at three sites in summer. Alkanes were the largest group of NMHCs (>50%), followed by alkenes and aromatics. Acetone was the most abundant carbonyl species (>50%). The OH loss rates (LOH) of VOCs were calculated to estimate their chemical reactivities. Alkenes played a predominant role in VOC reactivity, among which ethene and propene were the largest contributors. Isoprene contributed 11.61–38.00% of the total reactivity of measured VOCs. Alkenes and aromatics were the largest contributors (47.65–61.53% totally) to the total Ozone Formation Potential (OFP) of measured VOCs based on the observed mixing ratio. Isoprene was the most reactive species, but originated mainly from biogenic emissions. Ethene, m/p-xylene, toluene, propene, o-xylene, and 1-butene were considered to play significant roles in ground-level ozone formation in this region. The OFPs of total measured NMHCs increased by 10.20–22.05% when they were calculated based on the initial mixing ratio. Photochemical losses of hydrocarbons and the secondary formation of carbonyls in this region were also determined. Vehicle exhaust emissions contributed substantially to ambient VOCs.