科研成果 by Year: 2016

2016
Niu HY, Hu W, Zhang DZ, Wu ZJ, Guo S, Pian W, Cheng WJ, Hu M. Variations of fine particle physiochemical properties during a heavy haze episode in the winter of Beijing. Science of the Total Environment. 2016;571:103-109.Abstract
Chemical composition, morphology, size and mixture of fine particles were measured in a heavy haze and the post-haze air in Beijing in January 2012. With the occurrence of haze, the concentrations of gaseous and particulate pollutants including organics, sulfate, nitrate, and ammonium grew gradually. The hourly averaged PM2.5 concentration increased from 118 mu g m(-3) to 402 mu g m(-3) within 12 h. In contrast, it was less than 10 mu g m(-3) in the post-haze air. Occupying approximately 46% in mass, organics were the major component of PM1 in both the haze and post-haze air. Analysis of individual particles in the size range of 0.2-1.1 mu m revealed that secondary-like particles and soot particles were always the majority, and most soot particles had a core-shell structure. The number ratio of secondary-like particles to soot particles in accumulation mode in the haze air was about 2:1, and that in the post-haze air was 8:1. These results indicate both secondary particle formation and primary emission contributed substantially to the haze. The mode size of the haze particles was about 0.7 mu m, and the mode size of the post-haze particles was 0.4 mu m, indicating the remarkable growth of particles in haze. However, the ratios of the core size to shell size of core-shell structure soot particles in the haze were similar to those in the post-haze air, suggesting a quick aging of soot particles in either the haze air or the post-haze air. (C) 2016 Elsevier B.V. All rights reserved.
Peng JF, Hu M, Gong ZH, Tian XD, Wang M, Zheng J, Guo QF, Cao W, Lv W, Hu WW, et al. Evolution of secondary inorganic and organic aerosols during transport: A case study at a regional receptor site. Environmental Pollution. 2016;218:794-803.Abstract
Understanding the evolution of aerosols in the atmosphere is of great importance for improving air quality and reducing aerosol-related uncertainties in global climate simulations. Here, a unique haze episode at a regional receptor site near the East China Sea was examined as a case study of the aging process of atmospheric aerosols during transport. An increase in photochemical age from 5 h. to more than 25 h and a progressive increase in the fitted mean particle diameter from 70 nm to approximately 300 nm were observed. According to the pollution features and meteorology conditions involved, pollution accumulation (PA), sea breeze (SB), and land breeze (LB) periods were identified. Concentrations of black carbon (BC), hydrocarbon-like organic aerosols (HOA), semi-volatile oxidized organic aerosols (SV-OOA), and nitrate increased by 7-fold up to 39-fold when the air masses passed through Taizhou, a nearby city. In addition, nitrate and SV-OOA dominated the aerosol composition in the urban outflow plumes (52% and 18%, respectively), yet they gradually decreased in concentration during transport. In contrast, sulfate and the low-volatile oxidized organic aerosols (LV-OOA) exhibited more regional footprints and potentially have similar formation mechanisms. The atomic oxygen-to-carbon (O/C) ratio also increased from 0.45 to 0.9, thereby suggesting that rapid formation of highly oxidized secondary organic aerosols (SOA) occurred during transport. Overall, these results provide valuable insight into the evolution of the chemical and physical features of aerosol pollution during transport and also highlight the need for regulatory controls of nitrogen oxides, sulfur dioxide, and VOCs to improve air quality on different scales. (C) 2016 Published by Elsevier Ltd.
Zheng J, Hu M, Peng JF, Wu ZJ, Kumar P, Li MR, Wang YJ, Guo S. Spatial distributions and chemical properties of PM2.5 based on 21 field campaigns at 17 sites in China. Chemosphere. 2016;159:480-487.Abstract
Severe air pollution and its associated health impacts have become one of the major concerns in China. A detailed analysis of PM2.5 chemical compositions is critical for optimizing pollution control measures. In this study, daily 24-h bulk filter samples were collected and analyzed for totally 21 field campaigns at 17 sites in China between 2008 and 2013. The 17 sites were classified into four groups including six urban sites, seven regional sites, two coastal sites in four fast developing regions of China (i.e. Beijing-Tianjin-Hebei region, Yangtze River Delta, Pearl River Delta and Sichuan Basin), and two ship cruise measurements covered the East China Sea and Yellow Sea of China. The high average concentrations of PM2.5 and the occurrences of extreme cases at most sites imply the widespread air pollution in China. Fine particles were largely composed of organic matter and secondary inorganic species at most sites. High correlation between the temporal trends of PM2.5 and secondary species of urban and regional sites highlights the uniformly distributed air pollutants within one region. Secondary inorganic species were the dominant contributors to the high PM2.5 concentration in Northern China. However in Southern China, the relative contributions of different chemical species kept constant as PM2.5 increased. This study provides us a better understanding of the current state of air pollution in diversified Chinese cities. Analysis of chemical signatures of PM2.5 could be a strong support for model validation and emission control strategy. (C) 2016 Elsevier Ltd. All rights reserved.
Hu W, Niu HY, Zhang DZ, Wu ZJ, Chen C, Wu YS, Shang DJ, Hu M. Insights into a dust event transported through Beijing in spring 2012: Morphology, chemical composition and impact on surface aerosols. Science of the Total Environment. 2016;565:287-298.Abstract
Multiple approaches were used to investigate the evolution of surface aerosols in Beijing during the passage of a dust event at high altitude, which was from the Gobi areas of southern Mongolia and covered a wide range of North China. Single particle analysis with electron microscope showed that the majority of coarse particles were mineral ones, and most of them were in the size range of 1-7 mu m with a peak of number concentration at about 3.5 mu m. Based on elemental composition and morphology, the mineral particles could be classified into several groups, including Si-rich (71%), Ca-rich (15%), Fe-rich (6%), and halite-rich (2%), etc., and they were the main contributors to the aerosol optical depth as the dust occurred. The sizedistributions of surface aerosols were significantly affected by the dust intrusion. The average number concentration of accumulation mode particles during the event was about 400 cm(-3), which was much lower than that in heavily polluted days (6300 cm(-3)). At the stage of floating dust, the number concentration of accumulation mode particles decreased, and coarse particles contributed to total volume concentration of particulate matter as much as 90%. The accumulation mode particles collected in this stage were mostly in the size range of 0.2-0.5 mu m, and were rectangular or spherical. They were considered to be particles consisting of ammonium sulfate. New particle formation (NPF) was observed around noon in the three days during the dust event, indicating that the passage of the dust was probably favorable for NPF. (C) 2016 Elsevier B.V. All rights reserved.
Kulmala M, Petaja T, Kerminen VM, Kujansuu J, Ruuskanen T, Ding AJ, Nie W, Hu M, Wang ZB, Wu ZJ, et al. On secondary new particle formation in China. Frontiers of Environmental Science & Engineering. 2016;10:10.Abstract
Formation of new atmospheric aerosol particles is a global phenomenon that has been observed to take place in even heavily-polluted environments. However, in all environments there appears to be a threshold value of the condensation sink (due to pre-existing aerosol particles) after which the formation rate of 3 nm particles is no longer detected. In China, new particle production has been observed at very high pollution levels (condensation sink about 0.1 s(-1)) in several megacities, including Beijing, Shanghai and Nanjing as well as in Pearl River Delta (PRD). Here we summarize the recent findings obtained from these studies and discuss the various implications these findings will have on future research and policy. (C) Higher Education Press and Springer-Verlag Berlin Heidelberg 2016
Gu F-ting, Hu M, Wang Y, Li M-ren, Guo Q-feng, jun Wu Zhi. Characteristics of PM2.5 pollutionin winter and spring of Beijing during 20092010. China Environmental Science. 2016;36:2578-2584.Abstract
A comprehensive measurement was conducted to investigate thecharacteristics of particulate matter (PM) pollution in winter and spring of Beijing. 24-hour particle samples were collected from December to May, 20092010, and the chemical compositions of PM2.5 were analyzed. The average PM2.5 massconcentrations were (84.97+or-68.98)mug/m3 and (65.25+or-45.76) mug/m3 in winter and spring, respectively. Secondary inorganic aerosols, i.e. sulfate, nitrate, andammonium (SNA), and secondary organic aerosols (SOA) were dominant theparticulate matter, with the total fraction (SNA+SOA) of 49% and 47% in winter and spring, respectively. Due to the largesource emissionand unfavorable meteorological conditions such as low temperature, low wind speed, and high relative humidity; the contributions of secondary inorganic aerosols (NH4+. NO3. SO42) were enhanced during thepolluted days, and the nitratewas more enhanced on polluted days. The SOA was always the most importantorganic aerosolcomponentcontributedto PM2.5 in winter and spring. The contribution ofprimary organicaerosolsalso increased due tothe stagnant meteorological condition on polluted days.
吴志军、王渝.; 2016. 大气纳米颗粒热动力学性质的实时追踪测量装置. China patent CN ZL 2016 2 1443960.6.
刘玥晨、吴志军*、谭天怡、王玉珏、秦艳红、郑竞、李梦仁、胡敏. 基于实测PM2.5化学组分估算其有效吸湿参数和含水量:理论模型与实例分析. 中国科学:地球科学. 2016;(07):976~985.
Wu ZJ, Zheng J, Shang DJ, Du ZF, Wu YS, Zeng LM, Wiedensohler A, Hu M. Particle hygroscopicity and its link to chemical composition in \hack\newline the urban atmosphere of Beijing, China, during summertime. Atmospheric Chemistry and Physics [Internet]. 2016;16:1123–1138. 访问链接